

Detecting Bug Severity Level using Machine

Learning Techniques

 تعيين مستوى الخطورة للأخطاء باستخدام تقنيات التعلم الآلي

Prepared by:

 Hamza AL-Jundi

Supervised by:

Dr. Sherifa Murad

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Master Degree in Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

Jan. 2021

ii

Authorization

iii

Committee Decision

iv

Acknowledgements

The completion of this thesis would not have been possible without the support and

encouragement of several special people. Hence, I would like to take this opportunity

to show my gratitude to those who have assisted me.

I would first like to express my heartfelt thanks to my supervisor Dr. Sherifa Murad.

A more supportive and considerate supervisor I could not have asked for. There was

many times where I had reached the ‘crossroads’ and each time Dr. Sherifa was there

to steer me towards the right path. Her willingness to offer me so much of her time and

intellect is the major reason this thesis was completed.

Finally, I would like to thank my family to whom I owe a great deal. To my late

Grandfather Mohammad, thank you for showing me that the key to life is enjoyment.

To my father Jamal, who makes the highest sacrifice and dedication for us thank you

for your great support and effort, and finally, the one person who has made this all

possible has been my mother Wafa'a. She has been a constant source of support and

encouragement and has made an untold number of sacrifices for the entire family, and

specifically for me to continue my schooling. She is a great inspiration to me. Hence,

great appreciation and enormous thanks are due to her, for without her understanding,

I am sure this thesis would never have completed. I thank you all.

v

Table of Contents

Title….. .. ii

Authorization ... ii

Committee Decision ... iii

Acknowledgements ... iv

Contents ... v

List Of Figures ... vii

List Of Tables ... ix

List Of Acronyms .. x

Abstract in English .. xi

Abstract in Arabic ... xiii

Chapter One ... 1

1.1 Research Context ... 1

1.2 Background .. 1

1.3 Problem Statement ... 1

1.4 Research Aims And Objectives ... 2

1.5 Research Questions .. 2

1.6 Research Methodology .. 2

1.7 Thesis Organization ... 4

Chapter Two ... 5

2.1 Overview .. 5

2.2 What Is Bug? ... 5

2.3 Bug Severity And Priority ... 5

2.4 Bug Severity Vs Priority .. 8

2.1 Bug Reports Lifecycle ... 8

2.5 Bug Reports Content .. 10

2.6 Machine Learning .. 11

2.6.1 Recurrent Neural Network ... 13

2.6.2 Long Short-Term Memory... 14

2.7 Related Works.. 15

vi

Chapter Three .. 21

3.1 Methodology Overview ... 21

3.2 Proposed Framework ... 21

3.3 Phase One: Data Extraction And Text Pre-Processing 22

3.3.1 Dataset Extraction .. 22

3.3.2 Dataset Pre-Processing .. 23

3.4 Phase Two: Feature Extraction, Training Dataset And Applied Lstm, And Rnn

Algorithms And Evaluation Process .. 30

3.4.1 Feature Extraction .. 30

3.4.2 Dataset Training And Testing .. 31

3.4.3 Evaluation Measures .. 36

Chapter Four .. 38

4.1 Overview .. 38

4.2 Results Of Lstm ... 38

4.2.1 Roc Curve Of Lstm .. 38

4.2.2 Confusion Matrix Of Lstm .. 39

4.2.3 Measure Values Applied On Lstm... 40

4.2.4 Training And Validation Accuracy Plot Of Lstm .. 40

4.2.5 Training And Validation Loss Plot Of Lstm ... 41

4.2.6 Accuracy Plot Of Lstm .. 42

4.3 Results Of Rnn ... 43

4.3.1 Roc Curve Of Rnn ... 43

4.3.2 Confusion Matrix Of Rnn .. 44

4.3.3 Measure Values Applied On Rnn .. 44

4.3.4 Training And Validation Accuracy Plot Of Rnn ... 45

4.3.5 Training And Validation Loss Plot Of Rnn ... 45

4.3.6 Accuracy Plot Of Rnn .. 46

4.4 Comparison Between Lstm And Rnn .. 47

Chapter Five ... 48

5.1 Overview .. 48

5.2 Conclusions .. 48

5.3 Future Work ... 49

References .. 50

vii

List of Figures

Figure

Number
Title Page

Figure 1.1 The Research Methodology 4

Figure 2.1 Severity Levels. 7

Figure 2.2 Priority levels. 8

Figure 2.3 Bug Severity VS Priority. 8

Figure 2.4 Life Cycle Of Bug Reports (JIRA, 2020). 9

Figure 2.5 RNN. 14

Figure 2.6 LSTM Layers 15

Figure 3.1 The Proposed Framework. 22

Figure 3.2 Dataset 23

Figure 3.3 Pre-Processing Activities 24

Figure 3.4 Top 25 Words Of The Dataset 26

Figure 3.5 Top Words In The Text. 27

Figure 3.6 A Cloud Of Severe Class. 28

Figure 3.7 Word Cloud Of A Non-Severe Class. 29

Figure 3.8 Feature Extraction 30

Figure 3.9 Feature Selection. 30

Figure 3.10 Dataset Splitting. 30

Figure 3.11 Dataset Training and Testing. 31

Figure 3.12 RNN implementation 32

Figure 3.13 RNN Model Structure. 33

Figure 3.14 RNN Model Training 33

Figure 3.15 The Accuracy Rate Of The RNN Model 33

viii

Figure 3.16 Implementation of LSTM 35

Figure 3.17 LSTM Model Structure 35

Figure 3.18 LSTM Model Training and Validating 35

Figure 3.19 The LSTM Model Training With 6 Epochs. 36

Figure 4.1 ROC Curve 39

Figure 4.2 Training and Validation Accuracy of LSTM. 41

Figure 4.3 Loss Plot of LSTM 42

Figure 4.4 Accuracy Plot. 42

Figure 4.5 Roc Curve for RNN. 43

Figure 4.6 Training and Validation Accuracy Plot of RNN. 45

Figure 4.7 Loss Plot of LSTM. 46

Figure 4.8 Accuracy Plot of RNN. 46

Figure 4.9
A Time Computation-Based Comparison between LSTM

and RNN.
47

ix

List of Tables

Table Number Title Page

Table 2.1 Bug Report Content 10

Table 2.2 Summary Of Related Methodology 20

Table 3.1 The Most Used 10 Words 27

Table 3.2 Words Of Severe Class 28

Table 3.3 Ten Words Of A Non-Severe 29

Table 4.1 The Confusion Matrix Of The LSTM Model 400

Table 4.2 Measure Values Applied On LSTM 41

Table 4.3 The Confusion Matrix Of The RNN Model 45

Table 4.4 Measure Values Applied On RNN 45

Table 4.5 Comparison Between LSTM And RNN Result 47

x

List of Acronyms

CNN Condensed Nearest Neighbour

CSV Comma-Separated Values

HTTP Hypertext Transfer Protocol

ID Identifier

IG Information Gain

ITIL Information Technology Infrastructure Library

LSI Latent Semantic Indexing

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perception

MLR Multinomial Logistic Regression

MMLR Multi-Nomial Multivariate Logistic Regression

NB Naïve Bayes

PITS Project And Issue Tracking System

QA Quality Assurance

RF Random Forest

RNG Relative Neighbour Graph

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SRcut Size Regularized Cut

STC Suffix Tree Clustering

SVM Support Vector Machine

xi

Detection Bug Severity Level using Machine Learning Techniques

Prepared by: Hamza AL-Jundi

Supervised by: Dr. Sherifa Murad

Abstract

Software maintenance is the process of modifying a component or system after

delivery, in order to correct defects, improve quality characteristics, or adapt to a

changing environment (ISTQB, 2019). To reduce maintenance cost the quality

assurance engineers ensure that the software meets the requirements of the software

owner and the user perspective by applying some testing techniques, such as usability

testing, and performance testing.

When the testing team finds a bug, the bug reported to the development team, and

after the bug is resolved, the testing team should re-test the reported bugs. This process

will repeat each time the quality assurance team members find any bug. Bugs report

should contain all the needed information to the developers, such as the steps to

reproduce the bug, the bug priority and severity, and a brief description of it.

The most common point that makes software quality tester and developers' life

harder is the limitation of time and human resources, which may lead him/her to

discard some of the reported bugs, to take care of bugs that are more critical. This

study aims to overcome the mentioned problems, by automating the whole process of

assigning the severity level on newly reported bugs to replace the manual severity

assigning.

This thesis focuses on the detection of bugs severity (sever or non-sever), using

machine learning approach, the features of the bugs report will be cleaned using text

mining techniques such as (tokenization, stemming), and then a comparison between

(LSTM and RNN) to evaluate which technique is giving the best result in assigning

bugs severity.

The implementation divided into four main phases, in the first phase, the data set

will extracted, then in the second step, dataset pre-processing will be done, the third

phase is feature selection and in the last phase, the framework will propose a prediction

and it called the prediction phase. The bug reports dataset extracted from the repository

of JIRA related to closed-source projects developed by TETCO Company located in

Riyadh, Saudi Arabia; the datasets mainly contain four features including project

xii

name, bug id, bug description, and the severity level of the bug. After model training,

the different evaluation measures used for evaluating model performance. According

to the experimental results, we achieved a better result using the LSTM neural network

instead RNN.

Keywords: Bug Severity, Long Short-Term Memory, Recurrent Neural Network,

Neural Network.

xiii

 تعيين مستوى الخطورة للأخطاء باستخدام تقنيات التعلم الآلي
 حمزة الجندي. إعداد:

 شريفة مراد.إشراف الدكتورة:
 الملخص

يعرف خطأ البرنامج بأنه مجموعة المشاكل التي تحدث خلال مراحل بناء المشروع والتي
تؤدي إلى نتيجة غير صحيحة أو غير متوقعة. في عملية اختبار البرمجيات، تعد المرحلة الرئيسية

لى وقت ويًا إهي التنبؤ بخطورة تقارير الأخطاء. ومع ذلك، يحتاج تصنيف تقارير الأخطاء يد
 وموارد من ذوي الخبرة. مما يؤدي الى تأخير إصلاح الأخطاء ذات الأولوية العالية.

في هذه الاطروحة، تم إقتراح إطاراً لتعيين مستوى الخطورة المناسب لتقارير الأخطاء، بإسناد
اء نقيمة لخطورة تقرير الخطأ، والهدف من هذا الإطار هو تجنب استغراق الوقت المستهلك أث

تعيين خطورة الاخطاء بشكل يدوي بالاضافة الى تحسين الدقة والفعالية في التنبؤ خطورة تقارير
 الأخطاء.

تم التحقق من فعالية هذا الإطار وصحته بتجربته على مجموعات بيانات مستخرجة من
JIRA باستخدام لوحة معلومات شركة TETCO وهو مشروع مغلق المصدر لم يتم إستخدامه

تقرير خطأ، للحصول على أداء أفضل وتحقيق دقة 5522أبحاث سابقة، ويحتوي على في
أعلى.تم إجراء التجارب على مجموعة البيانات الحقيقية من خلال التعلم العميق بإستخدام

 (.RNN(، و)LSTM: الذاكرة العصبية طويلة المدى)ماخوارزميتين وه

اص بتعيين مستوى الشدة المناسب لتقارير تشير نتائج تجربتنا الى أن إطار العمل الخ
الأخطاء والذي يستند الى التعلم العميق، بأنه يتنبأ بخطورة تقارير الأخطاء بدقة مرتفعة، حيث

، أما نسبة 0.858 :تصل الى LSTMأظهرت النتائج نسبة التنبؤ بمستوى الخطورة إستناداً الى
 LSTMمما يعني أن خوارزمية ، 0.58تصل الى: RNNالتنبؤ بمستوى الخطورة إستناداً الى

 .RNNمية بخوارز ناسب لتقارير الأخطاء مقارنةكانت الأكثر دقة في التنبؤ بمستوى الخطورة الم

الكلمات المفتاحية: خطورة الأخطاء، الذاكرة العصبية طويلة المدى، الشبكة العصبية المتكررة،
الشبكة العصبية.

1

1 Chapter One

Introduction

1.1 Research Context

This thesis focuses on the detection of bugs severity (severe or non-sever). Using machine

learning approach, the features of the bugs report will be cleaned using text mining

techniques such as tokenization and stemming, and then the comparison between long-

term memory and recurrent neural network to evaluate the technique and determine

which gives the best result in assigning bugs severity.

1.2 Background

In today’s world, a quick way to predict the severity of bug reports was necessary in order

to fix these bugs quickly.

The idea of the proposed framework appeared due to the large increase in the submitted

bug reports with limited resources, whether it was human resources such as developers,

or the time consumed in determining priority.

Therefore, there was a great need to suggest an important framework in order to focus on

high severity bug reports and resolve them quickly.

The framework is becoming increasingly important, as a unique dataset used to build this

framework, extracted from closed source projects TETCO containing more than 2355

bug reports not used in previous research, provided by the JIRA dashboard.

1.3 Problem Statement

In today’s agile world is very important to deliver the software in less time without

affecting the quality of software. It is the job of bug trigger to classify the bugs based on

2

criticality. In a personal communication, Mozilla trigger highlighted that “Every day,

almost 300 bugs appear that need triaging.

This study aims to automate the bug severity detection process to replace the manual

severity assigning.

1.4 Research Aims and Objectives

This thesis aims to create an efficient system that can detect the bug severity in software.

To achieve this aim different set objectives listed below:

 Automate the bug severity detection process to replace the manual severity assigning.

 Exploring data pre-processing technique and choosing the best technique of pre-

processing of the dataset.

 Training and testing model on training and validation dataset.

 Overcome the limitation of existing methodologies.

 Comparing the performance of both RNN and LSTM.

1.5 Research Questions

The problem in this thesis can filtered in the following questions:

 What is the performance of the proposed framework?

 What will be the accuracy of the proposed framework?

1.6 Research Methodology

In this thesis, the general study methodology used is the positivist approach. This

methodology uses hypotheses and empirical finding (Iivari, Hirschheim, & Klein, 1998),

so it would be appropriate for the thesis. The method used in this thesis includes several

steps, including:

 Define the problem.

3

 Formulate a hypothesis.

 Prepare the experiment and produce the details.

 Collect the information and perform pre-processing.

 Evaluate the model.

 Interpret the conclusions from the model.

There are four phases of the adopted research methodology in this thesis as shown on in

Figure 1.1 include the literature review, the literature analysis, design and modelling and

performance evaluation.

Figure 1.1: The Research Methodology.

• Review the literature that used machine
learning techniques in the bug reports
predictions .

Phase One: Literature Review

• Determine the most important algorithms
and features used in this field.

Phase Two: Literature
Analysis

• Data collection and data pre-processing
and build the model.

Phase Three: Building The
Model

• System validation and results analysis. Phase Four: Performance
Evaluation

4

1.7 Thesis Organization

The rest of this thesis organized in the following structure:

 Chapter Two: Reviews the theoretical background and related work of relevant

research papers in the bug reports and explains the importance of predicting bug

report severity. In addition, this chapter introduces the most common machine

learning methods that can used to predict bug report severity.

 Chapter Three: Provides a detailed explanation of the prediction process of the bug

report, and it provides an overview of the dataset used in this study and its source, in

addition to a detailed presentation of the proposed framework steps that were used in

this thesis.

 Chapter Four: Explains the most important results of this thesis and compares the

results of the algorithms used. In addition, this chapter presents a comparison between

the study that conducted in this thesis and a previous study.

 Chapter Five: Presents the conclusion and future works.

5

2 Chapter Two

Background and Related work

2.1 Overview

This chapter discusses the theoretical background for bug severity, including the

definition of the bug, its life cycle, and the difference between the severity and priority

of the bug. This chapter provides an overview of machine learning, in addition to giving

a brief overview of many of the current research related to machine learning applied to

predicting and assigning the bug severity.

2.2 What is Bug?

According to ISTQB, the bug is an imperfection or deficiency in a work product where

it does not meet its requirements or specifications (ISTQB, 2019).

The Information Technology Infrastructure Library, defined the bug as: event that is not

part of the standard operation of service and causes an unplanned interruption or decrease

the quality of service (Dabade, 2012).

2.3 Bug Severity and Priority

Users through issue tracking systems often submit bug reports. The bug report can

describe the particular case when a software bug occurs and the bug report includes bog

regeneration information, a bug report contains several attributes: the bug-id, submission

date, the status, the priority, the severity, the summary, and the description.

The severity is how austere a bug is, it's an important attribute of a bug report that decides

how quickly it should be resolved (Kukkar, Mohana, & Kumar, 2020), also it can be used

to indicate whether a bug is an enhancement request. Bug severity terms can be expressed

6

in different ways depending on the bug tracking system that used, as follows (Bibyan,

Anand, & Jaiswal, 2020):

 Bug Severity in Bugzilla indicates how severe the problem is, it can vary from trivial,

minor, normal, major, and critical to blocker, the blocker means the application

unusable. Priority, however, determines the urgency for repairing a bug. In Bugzilla,

the combination of priority and severity defines the importance of a Bug (Bugzilla,

2021).

 Bug Severity in JIRA is referred to as a priority, it indicates how important the bug,

it can vary from the highest priority which is a blocker to the lowest priority which is

minor in relation to other bugs.

 Bug Severity in Google Issue Tracker is referred to as priority, which indicates how

priority the bug is, and it can vary from P0 which means the bug needs to be addressed

immediately to P4 which means the bug fixing can be postponed in relation to other

bugs(Pandey, Hudait, Sanyal, & Sen, 2018).

Bug Severity in JIRA (JIRA, 2020) can be divided into five levels including Blocker,

Critical, Major, Minor, and Low, as shown in figure 2.1.Each of these levels will be

defined in detail as follows:

Figure 2.1: Severity Levels.

Low

Minor

Major

Critical

Blocker

7

 Blocker: The bug currently makes the system or functionality unavailable.

 Critical: The bug affects sensitive or critical data and there is no way to avoid it.

 Major: The bug has a big impact on features or main data and solutions are available,

but it is not clear or hard to implement.

 Minor: This bug affects minor or non-critical data and a reasonable solution is

available.

 Low: The bug does not affect functions or data, nor does it affect performance or

efficiency. It is only inconvenience and does not require any solution.

The priority in the bug report is how quick a system bug is. It demonstrates the urgency

of handling and deleting a bug. It really is a test of the way that the bug is priority in the

debugging hierarchy. Bug goals are appropriately allocated to scheduling a software

development life cycle (Bibyan et al., 2020).

The priority can be divided into four levels including Immediate, High, Medium, and

Low (JIRA, 2020), as shown in figure 2.2.

Figure 2.2: Priority Levels.

 Immediate: a bug that is of the highest priority and should fixed as soon as possible.

 High: the best bug fixed when the next build cycle occurs.

Low

Medium

High

Immediate

8

 Medium: this type of bug takes precedence over low-priority bug. It should fixed but

it can placed on the next iterations or release cycle if necessary. If necessary.

 Low: fixed bugs are the lowest priority after all of the high and medium-priority bugs

are fixed.

2.4 Bug Severity VS Priority

Bug severity and the bug priority in software testing are two widely used terms; usually

they are synonymously use, which is wrong. The severity is related to standards and

functionality of the system; whereas, the priority is related to scheduling so the severity

of a bug is determined by quality analyst, test engineer; whereas, a priority of a bug is

determined by the product manager or client (Ramay, Umer, Yin, Zhu, & Illahi,

2019).The difference between the two terms is shown in the following figure:

Figure 2.3: Bug Severity VS Priority.

2.1 Bug Reports Lifecycle

The lifecycle of bug reports contains the entire bug that has discovered to start through a

process. Bug reports go through a series of status, this state varies from one project to

another (Xie, Wen, Zhu, Gao, & Zheng, 2018). Where the bug reports begin when the

bug is found and ends when the bug reports are closed (JIRA, 2020).

Bug Severity:

The degree of impact
that a defect has on the
system.

Bug Priority:

The order of severity which
has impacted the system.
degree of impact that a defect
has on the system.

9

The life cycle of a bug contains a set of states that any detected bug goes through, and

the number of these cases depends on the project itself. In this thesis, the life cycle of the

bug reports has divided into five states including:

 New

 Assigned

1. Rejected or

2. Deferred or

3. Duplicate

4. Fixed

 Retested

 Verified or Re-Opened

 Closed

The figure bellow illustrates the lifecycle of bug reports from the JIRA software (JIRA,

2020).

Figure 2.4: Life Cycle Of Bug Reports (JIRA, 2020).

10

Once the quality-assurance member opens a bug, the status of the bug is new, it will

remain new until a lead assigns it to a developer team member, and it will be converted

to assigned.

The assigned developer has various options for converting bug status to, if it is not a bug,

the status is converted to reject, if the submission bug is not really that severe, the status

of the bug is converted to deferred and resolved during future releases.

If two bugs of the same scenario are record, the developer can make the status of this bug

duplicate.

If a new bug is resolve by a developer, it changes the status to fixed, and then it will go

back to the qi team member to retest it, if verified and solved, the statues will closed,

else the status will change to re-opened.

2.5 Bug Reports Content

The Bug reports include set of components which provide developers with knowledge to

help reproduce and resolve the problem (Bugzilla, 2021), The bug reports included a

combination of factors including (report id, summary, description, project name, priority,

severity, attachment, status, sprint number, and reporter name), all of these factors are

explained in the following table:

Table 2.1.Bug Report Content

Field Definition

Report Id A unique identifier.

Summary A line of word describing a bug.

Description
More details that help the developer to reproduce the bug,

such as test step, expected and actual results.

Project Name The name of the project the reported bug relates to.

11

Priority
Represented in three words, low, medium, high and it says

how quickly this bug should be resolved.

Severity

Represented in four common words, low, medium-high, and

critically based on the impact of this bug on the system

functionality.

Attachment A screenshot or video shows the bug to the developer.

Status The status of the bug.

Sprint Number Shows during which sprint this bug detected.

Reporter Name The person who filed this bug.

2.6 Machine Learning

Machine Learning (ML) is an area of study that focuses officially on the hypothesis,

performance and properties of learning systems and algorithms. ML uses computer

capacities by integrating calculations and data recovery to make it seem to understand

and make logical choices, not only according to a particular strategy, but also to the earlier

behaviour or responses (Mohri, Rostamizadeh, & Talwalkar, 2018).

The term machine learning described as a method of making a system sufficiently

efficient that the different case uses can predicted accurately with experience. Machine

learning algorithms allowed important "regularities" to be discover in large sets of data.

It is regard as a research information-technology field rapid growth is due to

developments in data analysis.

ML algorithms can divide primarily into two categories, the first category is supervised

machine learning, and the purpose of supervised machine learning is to predict the right

label for the newly presented information through assessments and observations, which

it then classifies according to the training set.

12

And the second category is unsupervised machine learning, which implies that the data

are not accessible for training, the aim of unsupervised machine learning is to obtain

uncompelled data structures through analysing a similar approach between pairs of items,

which are generally connected to the approximate density or data clustering (Kukkar et

al., 2020).

Machine Learning (ML) is a discipline of AI that handles the development and analysis

of a model from the information obtained from the data .The various applications of ML

include classification and regression (Zhang, 2020). The ML classified into three main

kinds depend on the existent of labelled samples, which include unsupervised learning,

semi-supervised learning, and supervised learning. Moreover, ANNs, Naive Bayes

classifier, SVMs, Logistic and Linear regression are the popular utilized ML algorithms

(Burkov, 2019).

Deep Learning is a sophisticated type of ML with various levels of abstraction of data at

several processing levels (Voulodimos, Doulamis, Doulamis, & Protopapadakis, 2018).

Deep Learning can learn the complex distributions of entered samples via back-

propagation and point out how the internal parameters updated at each level. The

commonly applied deep learning comprises Recurrent Neural Networks (RNNs), CNNs,

DBNs, and auto-encoders.

According to (He, Xu, Yan, Xia, & Lei, 2020), there are three significant justifications

for deep learning outstanding. First, a recent increase in research on machine learning.

Second, affordable computing hardware. Finally, processing capabilities (GPU) are

grown sharply.

This thesis used the deep neural network algorithm including Long Short-Term Memory,

and K-Nearest Neighbours to predict the severity of bug reports.

13

2.6.1 Recurrent Neural Network

The Recurrent Neural Network (RNN) is a type of artificial neural network that uses

sequential or time-series data. These are frequently use for normal or transient issues

including language translation, natural languages processing, and speech recognition, and

they are used in popular applications such as Siri, speech recognition and Google

Translate (Zaremba, Sutskever, & Vinyals, 2014).

There are several advantages to using RNN, including (Wang & Tax, 2016):

 It is the first algorithm that, due to the internal memory, remembers its input,

which makes it well suited to machine learning problems involving sequential

data.

 RNN has redundant connection in hidden state. This recurring constraint ensures

that the sequential information captured in the input data. That is, the dependency

between words in the text while making predictions.

 RNN has a "memory" that remembers all the information about what was

calculated.

 All RNNs have feedback loops in the repeating layer. This allows them to retain

information in their "memory" over time.

The RNN use training data, including Feedforward and CNNs. It can draw information

from previous inputs to affect the current input and output by using its "memory." While

CNNs assume that inputs and outputs are distinct, RNN output based on previous

elements. Although future events can also help to evaluate the performance of the

sequence, these events cannot taken into account in their predictions by unidirectional

repetitive neural nets (Dyer, Kuncoro, Ballesteros, & Smith, 2016). The following figure

show the RNN:

14

Figure 2.5: RNN.

There are several types of RNN, which are (Cui, Long, Min, Liu, & Li, 2018):

 One-to-one: image and predicate the class (NN).

 One-to-many: one input and many outputs (take an image and give a description)

 Many-to-one: take a sentence and predicate if it is positive or negative.

 Many-to-many: take much input and predicate much output (translation of a

sentence from Arabic to English as an example).

2.6.2 Long Short-Term Memory

Long short -term memory (LSTM) is a form of supervised learning use for deep learning

to produce bandwidth prediction using historical measurements and to remember

information for long periods. Can be used in prediction problems for learning to turn

input data into a preferred response (Beran, Schützner, & Ghosh, 2010). LSTM

remembers historic events, which saw un-important data and forgets them. The

15

corresponding information was select to save via different activation function layers

called Internal Cell State Gates, as shown in the figure below:

Figure 2.6: LSTM Layers.

LSTM is considered a type of RNN that uses previous events to warn future events (Tan

et al., 2020). A set of gates used to control when information enters the memory, when it

has output, and when it forgotten, and these gates are:

 Input gate: the input gate controls the flow of input activations into the memory

cell.

 Output gate: output gate controls the output flow of cell activations into the rest

of the network.

 Forget gate: scales the internal state of the cell before adding it as input to the cell

through the self-recurrent connection of the cell, therefore adaptively forgetting,

or resetting the cell’s memory.

2.7 Related Works

The literature has included significant work on the use of machine learning to determine

the severity of bug reports, and some of these works will discusses in this section.

Tim Menzies et al. study (Menzies & Marcus, 2008) is considered one of the first

studies to predict the severity label of bug reports. A rule-based learning technique used

to build a new tool called SEVERIS. SEVERIS relies on text mining and machine-

learning techniques applied to unstructured data of the bug report unstructured data,

16

which includes report summary and description. The automated prediction model for this

study applied to the NASA-Project, and Project-Issue-Tracking-System (PITS). The

results showed that the SEVERIS tool could applied to other open-source repositories

such as Bugzilla, with a slight modification.

Anvik et al. (Anvik, Hiew, & Murphy, 2006) mentioned its personal

communication with a Mozilla triager that impacts: “Every day, almost 300 bug appear

that need triaging. This is far too much for only the Mozilla programmers to handle”.

Anvik discussed the possibility to construct severity predictors from the inserted text. For

data sets with more than 30 examples of high severity issues, SEVERIS always found

good issue predictors with high f-measures.

Cheng-Zen et al (C.-Z. Yang, Chen, Kao, & Yang, 2014) studied the impact of

four quality indicators of bug reports on severity prediction: stack traces, report length,

attachments, and steps to reproduce. The authors used the Eclipse dataset in their

empirical study. They concluded that examining the quality indicators in previous work

could efficiently improve the prediction performance in most cases that used text

information only.

In Yang et al (C.-Z. Yang, Hou, Kao, & Chen, 2012) study, they discussed the

extent of the impact of specific features effectively on severity prediction. They selected

their features Information Gain, Chi-Square, and Correlation Coefficient, based on the

Multinomial Naive Bayes classification method. They used four open-source components

in their experiment and used ROC curves to evaluate the measuring process. They

concluded that selected features affect efficiency in severity prediction performance in

most cases.

17

Meera Sharma et al (Sharma, Kumari, Singh, & Singh, 2014) developed a model

to predict severity level of a reported bug based on multiple attributes namely priority,

bug fix time, number of comments, number of bugs on which it is dependent, number of

duplicates for it, number of members in cc list, summary weight and complexity of bug

in a cross-project context. The authors used 5,859 bug reports in different open source

platforms. The result shows that the proposed model can help to predict bug reports,

which its historical data is not available, and provide accuracy in the range of 37.34 to

91.63%, 94.99 to 100%, 44.88 to 97.86% and 61.18 to 95.99% for different classifiers.

Imran et al (Imran, 2016) presented an approach, that combines feature extraction

and, machine learning, to predict the severity of each bug, this approach depends on a

keyword extraction text-mining algorithm for extracting keywords then it extracts the

important keyword. The data set used in these classes included 4 different labels in every

binary and multi-class, 90% refined data was used with machine learning algorithms and

then the model was tested on 10% refined data and the result was better performance and

higher classification precision -up to 90%-, data collection from Eclipse, Mozilla,

GNOME and other systems.

In Jindal (Jindal, Malhotra, & Jain, 2017) study, A different examination was

performed on four datasets of NASA's PITS using three main methods including decision

tree, Multi-Nominal Multivariate Logistic Regression (MMLR) and Multi-Layer

Perception (MLP) Prediction models were fed in various top-k terms, and these terms

were extracted from training and testing sets using an Information Gain (IG) feature

selection. The results showed that the performance of the decision tree is consider the

best of all previous methods in determining the severity of bug.

18

Madhu Kumari et al (Kumari, Sharma, & Singh, 2018), presented a new

classification approach they used five attributes for each reported bug, namely CC count,

Component, Operating system, number of comments, and priority, and from those

attributes, they derived two attributes called summary weight and entropy. To enhance

the classification process they applied six types of classifications namely: Naïve Bayes

(NB), k-Nearest Neighbours (KNN), Random Forest (RF), Relative Neighbours Graph

(RNG), Condensed Nearest Neighbour (CNN), and Multinomial Logistic Regression

(MLR) to make their classifier, the data sites used were collected from PITS, Mozilla and

Eclipse. After applying the classifier, they initialized, the result showed an improvement

in F-measure performance in comparison with previous research works.

Yang et al. (G. Yang, Min, Lee, & Lee, 2019) introduced a new technique, it’s an

amalgamation between similarity using KL-divergence and topic modeling using LDA

to define the severity of bug reports. In their research, they used 20,000 bug reports, those

reports were collected from four open-source projects (Xamarin, Eclipse, Wireshark, and

Mozilla) were assembled to validate their proposed technique. The result of applying their

technique showed that their model attains better performance, from an accuracy

perspective than other cutting-edge studies listed in their literature.

Ramey et al. (Ramay et al., 2019) Proposed a deep neural network based

automatic approach for the severity prediction of bug reports. This approach applies a

deep learning model, natural language techniques, and emotion analysis on the given

dataset for the severity prediction of bug reports. In addition, the approach automates the

severity assessment process and helps users by subtracting the severity assignment step

from bug reporting. This approach was evaluate on the history- data of open source

products from Eclipse and Mozilla, and the results of cross-product show that the

19

approach outperforms the state-of-the-art approaches, because it improves the f-measure

by 7.90%.

Arvinderet al (A. Kaur & Jindal, 2019) evaluated the performance of ten different

machine learning algorithms, which are naive Bayes, KNN, SVM, maximum entropy,

random forest, decision tree, bagging, boosting, Glmnet and SLDA, in terms of precision,

recall, and accuracy at the system-level and component-level. The evaluation conducted

in thirteen Apache projects that are automatically extract by BRCS tools. The result

shows that the Boosting algorithm performed best in twelve projects with an accuracy of

81% to 98% followed by a random forest of 75% to 97%, while Glmnet and SLDA

achieved the most accurate results among other machine learning algorithms. In addition,

the prediction of severity at component level gives better results than system-level

prediction as Component’s frequent terms are more specific than system-level frequent

terms which in turn give better results than Inter-system level prediction.

Hamdy (Hamdy & El-Laithy, 2019) proposed a framework for predicting fine-

grained severity levels which utilize a Minority Over-sampling Technique “SMOTE”, to

balance the severity classes, and a feature selection scheme, to reduce the data scale and

select the most informative features for training a KNN classifier, which utilizes a

distance-weighted voting scheme to predict the proper severity level of a newly reported

bug. The effectiveness of the proposed approach has validated with two bug repositories,

Eclipse and Mozilla. The result showed that their approach outperforms cutting-edge

studies in predicting minority severity classes.

Chauhan et al (Chauhan & Kumar, 2020) proposed a new automated classifier,

that works using bigram and TF-IDF approach to extract report features, and then they

20

used SVM and neural network, using they found that the accuracy level of the classes is

above 80, which make the approach effective and efficient.

The following table shows a summary of the literature review with limitations,

methodology, data set, and feature details for several studies related to determining

severity of bug reports.

Table 2.2. Summary of Related Methodology.

Ref Methodology Dataset Limitation Of Study Feature
Evaluation

Matrix

(Menzies &

Marcus,

2008)

SEVERIS

NASA

Project,

PITS

The proposed methodology has a Lack

of consistency in PITS. The written

conclusion is rules and is self-certifying

Textual

Precision,

Recall, and

F-1 score

(Sun, Song,

& Jiao,

2009)

k-means, SRcut Mozilla

The only textual features considered by

the study. Some comments also reduce

the model accuracy rate. Overall, the

performance of the model was not so

good. K means and normalization rates

were no better than SRC.

Textual

Cluster

purity, and

Accuracy

(Nagwani

& Verma,

2011)

STC

Mozilla,

Jboss-

Seam,

MySQL

The proposed method only considered

the small amount of dataset. The only

features used by methodology were

textual.

Textual

Purity, a

total count of

Clusters, and

total time.

(Nagwani

& Verma,

2012)

CLUBS

Androi,

JBoss,

Mozilla,

MySql

The accuracy rate of the proposed

methodology was quite low as

compared to the amount of dataset

Categori

cally and

textual

Precision,

Recall, and

F-1 score

(Somasund

aram &

Murphy,

2012)

SVM

Bugzilla

Eclipse

Pl

The only textual features considered by

the study. Some comments also reduce

the model accuracy rate. Overall, the

performance of the model was not so

good.

Textual Recall

(Chawla &

Singh,

2014)

TF-IDF, LSI
Google

Chrome

The accuracy rate of the model was not

so high.
Textual Accuracy

21

3 Chapter Three

Methodology

3.1 Methodology Overview

The methodology approach in this thesis is experimental. The idea of the proposed

framework emerged due to the increase of the submitted bug reports. Usually, developers

spend a lot of time reading and analysing the description of a bug report to enhance the

detection process of bug severity (Blocker, Critical, Major, Minor, and Low). Often the

appropriate level of severity cannot be determined and historical records must reviewed

in order to identify a relevant bug report.

3.2 Proposed Framework

This section presents the process of assigning the severity level for bug reports, it consists

of two phases as shown in the figure below and these phases are:

 Phase one: Data collection and text pre-processing.

 Phase two: Feature extraction, training dataset and applied LSTM, and RNN

algorithms and finally evaluation process.

22

Figure 3.1: The Proposed Framework.

3.3 Phase One: Data Extraction and Text Pre-Processing

3.3.1 Dataset Extraction

The bug reports dataset was extracted from the repository of JIRA (JIRA, 2020) related

to closed-source projects developed by TETCO Tatweer Educational Technologies

Company (TETCO, 2020) in Riyadh, Saudi Arabia.

These data collected over a period of two and a half years, and it contains more than 2355

bug reports organized in one CSV file.

Each bug report described by set of factors such as summary, description, bug id, status,

project name, project lead, priority, resolution, assignee, reporter, created date, resolved

date, component, environment, sprint, attachment files and comments.

This thesis used a specific set of factors from the chosen datasets. The factors are

considered as the most appropriate factors in order to predict the severity level (Blocker,

Critical, Major, Minor, and Low) are (Summary, Project key, Severity, Assignee,

and Reporter).

Proposed Framework

Phase One

Data Extraction

Text Pre-processing

Phase Two

Feature Extraction

Training Dataset

Applied LSTM and RNN

Evaluation Process

23

The dataset processed in three phases including dataset extraction, pre-processing, and

dataset training and testing, as shown in the figure 3.2, and in the following subsections,

these phases will explained in detail.

Figure 3.2: Dataset.

3.3.2 Dataset Pre-Processing

Data pre-processing is an important phase in the data mining process, as incorrect results

generated by the analysis of data that has not analysed; also, it makes it easy to work with

the input data. To this end, prior to the execution of the experiments, the quality and

accuracy of data should first be ensured data cleaning, data integration, data

transformation and data reduction are component of pre-processing activities (Dagao &

Yang, 2018).

A new training package is the result of a data pre-processing task, which would create

higher assignment efficiency and reduce classification time. This is due to the reduction

D
at

as
et

Dataset Extraction

JIRA

TETCO

Dataset Pre-Processing

Sort The CSV File Rows Based
On Severity Level

Tokenization

Stemming

Stop Words Removal

Dataset Training And Testing

Training Data 80%

Testing Data 20%

24

in the size of the data, which allows for the faster and easier operation of learning

algorithms (Bilalli, Abelló, Aluja-Banet, & Wrembel, 2018).

In this thesis, the Pre-processing of the TETCO dataset contains several activities as

shown in the following figure below, and these activities include sorting the row,

tokenization, stop-word removal, stemming, and remove the punctuation marks.

Figure 3.3: Pre-Processing Activitys.

These activities will discussed and explained in more detail in the following subsections.

3.3.2.1 Sorting

Sorting the CSV file rows based on the severity level.

Bug Reports Repository
Sort The CSV File Rows Based

On Severity Level

Tokenization Stop-word Removal

Stemming
Remove The Punctuation

Marks

Pre-processing Bug Reports

25

3.3.2.2 Tokenization

Tokenization is the process of dividing text into words or sentences, converting it into

lowercase letters, replacing punctuation marks, and removing end spaces.

3.3.2.3 Removal of Stop words

Words that are used to associate sentence flow with stop words, such as "the", "a", "on",

"is", "all", while processing data these words are removed because they can make the

computation complicated (J. Kaur & Buttar, 2018).

This process takes place in two steps, first the stop words extracted from the summary

column of the dataset using the NLTK library (NLTK, 2017) and then the second step is

to select the words and remove them from the dataset.

3.3.2.4 Applying Steaming

The steaming is a mechanism by which words are reduced to their root forms (Junior &

do Carmo Nicoletti, 2019).

For example, words “send”, “sending”, and “sent” are different words and the same root

word “send”. The word can be reduced to its steams and changed converted into “send”.

3.3.2.5 Punctuation Marks

Punctuation marks are symbols that add clarity to sentences(Nádvorníková, 2020).

English has 14 punctuation marks including period, question mark, exclamation point,

comma, semicolon, colon, dash, a hyphen, parentheses, brackets, braces, apostrophe,

quotation marks, and ellipsis (“?, !., . – { },: ;).

Punctuation marks are not necessary to train the model, so this step removes punctuation

marks from the data set. In addition, it is use to remove duplicate characters. Finally, the

words "www", "http?:" And "//" have been removed from the dataset.

26

3.3.2.6 Removing Repeating Character

The repeating character removed from the dataset, as they can affect the computation

complexity, time, and efficiency of the model.

3.3.2.7 The Words in Dataset

After pre-processing, the top 25 words an extracted from the dataset, as shown in the

figure below:

Figure 3.4: Top 25 Words Of The Dataset.

The frequency distribution of the top 25 words is also generate as shown in the figure

below. The x-axis indicates the count of words and the y-axis indicates the top 25 words.

The frequency distribution indicates that the word “request” has the most number of

counts.

27

Figure 3.5: Top Words In The Text.

The table below shows the 10 most used words and indicates that the word that appeared

the most frequently was "request" which appeared 955 times, while the word "wrong"

was the least visible, as it appeared 255 times.

Table 3.1.The most used 10 words

Word Count

Request 955

Appear 850

Student 469

Field 339

Scholarship 304

Mesag 283

Date 276

Valu 271

Companion 266

Wrong 255

28

The word cloud of severe class is shows in the figure below.

Figure 3.6: A Cloud Of Severe Class.

The table below shows the 10 most used words of severe class, it is indicates that the

word that appeared the most frequently was "request" which appeared 605 times, while

the word "wrong" was the least visible, as it appeared 124 times.

Table 3.2. Words Of Severe Class

Words Counts

Request 605

Apear 535

Student 292

Field 186

Scholarship 153

Approve 145

Value 145

Companion 131

Studi 128

Mesag 127

Wrong 124

29

The word cloud of the non-severity class is shows in the figure below.

Figure 3.7: Word Cloud Of A Non-Severe Class.

The table below shows the ten most used words of non-severe class, it is indicates that

the word that appeared the most frequently was "request" which appeared 350 times,

while the word "Update" was the least visible, as it appeared 129 times.

Table 3.3. Ten Words Of A Non-Severe

Words Counts

Request 350

Apear 315

Data 310

Student 177

Mesag 156

Field 153

Scholarship 151

Valid 151

Companion 135

Wrong 131

Update 129

30

3.4 Phase Two: Feature Extraction, Training Dataset and Applied

LSTM, and RNN Algorithms and Evaluation Process

3.4.1 Feature Extraction

The next step is to extract a feature from the pre-processed dataset. First, the input and

output features are extracted. The reshaping is performed with the values of (-1, 1).

Figure 3.8: Feature Extraction.

After that, the feature selection performed on the extracted feature. The maximum words

are selected 1500 and the maximum length is selected to 100. The tokenization of the

feature also performed.

Figure 3.9: Feature Selection.

After the extraction of features, the dataset divided into training and testing sets. The

testing data used for the training valuation of the model and the training dataset used to

train the model.

Figure 3.10: Dataset Splitting.

31

3.4.2 Dataset Training and Testing

In this thesis, a Python library called Tensor flow (Tensorflow, 2015) was used to divide

the data sets into training and testing sets in the ratio of 8:2, as shown in the figure below.

The testing sets used to evaluate the training for the model. Specifically, 471 bug reports

are used to train the model, where 1884 bug reports were trained. In addition, it is worth

noting that the length of the data set has a great influence on the models, so the large

length helps the dataset to be more efficient in performance.

Figure 3.11: Dataset Training and Testing.

The study used three algorithms for testing and training i.e., LSTM and RNN. Each of

these model training will be discussed in the following subsections in detail.

3.4.2.1 RNN Model Training

The RNN model trained on the training dataset. The RNN model used with the activation

function of “sigmoid”, to get output from zero to one. In addition, the drop out is set to

0.1, and the density is set to 1 and 64.

The rectified linear function "RELU" has also been used with two activation layers, since

RELU has shown great power when the input features are not independent of RELU if

x>zero returns x, otherwise it returns zero. For many neural network types, it has

converted into the default activation feature since a model used is easier to train and often

performs better.

Training Set
(80%)

1884 Bug
Reports

Testing Sets
(20%)

471 Bug Reports

Dataset
(100%)

2355 Bug
Reports

32

The model is set to sequential. The model contains eight layers. The first layer is the

dense layer that followed by the dropout layer. The dropout layer followed by an

activation layer. After the activation layer, again dense layer used that follows the dropout

layer. The dropout layer followed by the activation layer, dense layer, and third activation

layer. The model trained on 6 epochs. The batch size is set to 32 and verbose is set to one.

The model split validation also performed with 0.1.

Figure 3.12: RNN implementation.

The figure below shows the structure of the RNN model. This model contains eight

layers; the first layer is a dense layer that followed by the dropout layer. The dropout

layer followed by the activation layer. After the activation layer, again dense layer used

that follows the dropout layer. The dropout layer followed by the activation layer, dense

layer, and third activation layer.

33

Figure 3.13: RNN Model Structure.

The model trained on 20 epochs. The batch size is set to 32, the model split validation

also performed with 0.1.

Figure 3.14: RNN Model Training

The figure below shows the model training with 6 epochs. The loss and accuracy rate of

the model quantified against each epoch. For epoch 1, the model score validation loss of

0.82, the loss rate of 0.84, the accuracy rate of 0.60, and a validation accuracy of 0.60.

The accuracy rate of the model increase and decrease with increasing epoch.

Figure 3.15: The Accuracy Rate Of The RNN Model

34

3.4.2.2 LSTM Model Training

The LSTM model trained on the training dataset. The LSTM model used with the

activation function of “sigmoid” to get output from zero to one. In addition, the drop out

is set to 0.5, and the density is set to 1 and 64.

 The activation function “RELU” is also used since it has shown great power when the

input features are not independent of RELU if x>zero returns x, otherwise it returns zero.

For many neural network types, it has converted into the default activation feature since

a model used is easier to train and often performs better.

The embedding also performed that takes maximum words and input data length. The

model contains eight layers. The first layer is the input layer that followed by the

embedding layer. The LSTM, F1, activation and dropout layers used with LSTM. The

model trained on 6 epochs. The batch size is set to 32. The model split validation also

performed with 0.1.

Firstly, the data was pre-processed. The model trained on extracted features. The ROC

curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot are calculated

for analysing model performance (Keras, 2019).

The LSTM model trained on the training dataset. The LSTM model used with the

activation function of “sigmoid”. The drop out is set to 0.5. The density is set to one. The

activation function “RELU” is also used. The embedding also performed that take

maximum words and input data length.

35

Figure 3.16: Implementation of LSTM

The figure below represent the structure of the LSTM model. The model contains eight

layers. The first layer is the input layer that followed by the embedding layer. The LSTM,

F1, activation, and dropout layers used with LSTM.

Figure 3.17: LSTM Model Structure

The LSTM model trained on 20 epochs. The batch size is set to 80. The model split

validation also performed with 0.1.

Figure 3.18: LSTM Model Training and Validating.

36

The figure below shows the LSTM model training with 6 epochs. The loss decrease and

the accuracy increases against each epoch. For epoch one, the model score validation loss

of 0.80, the loss rate of 0.94, the accuracy rate of 0.48, and the validation accuracy of

0.71. The accuracy rate of the LSTM model increase with increasing epoch.

Figure 3.19: The LSTM Model Training With 6 Epochs.

3.4.3 Evaluation Measures

There are several criteria for measuring the accuracy of prediction algorithms. In this

thesis, the accuracy of prediction algorithms was measured using the following criteria's

Precision, Recall, F-Measure, and Accuracy to consider two important things

performance and effectiveness (Domingues, Filippone, Michiardi, & Zouaoui, 2018).

The Accuracy

Accuracy is the percentage of correctly predicted to the total, which is considered an

important measure when using asymmetric datasets that present when the false positive

and false negatives the same value. Accuracy can measured by the Equation (1) (Imran,

2016):

Accuracy =(TP+ TN) /(TP+FP+FN+TN) (1)

The Precision

37

Precision is the function of relevant instances among the retrieved instances. It can

measured by the Equation (2) (Imran, 2016):

Precision = TP / (FP+TP) (2)

The Recall

Recall is the percentage of correctly predicting positive for everyone in the actual result;

it can measured by the Equation (3) (Imran, 2016):

Recall = TP /(TP + FN) (3)

The F1-Score

F1-Score means the average of Precision and recall taking into account false positives

and false negatives. F1-Score is more effective than accuracy, especially if the data

distribution is unbalanced. F1-Score can measured by the Equation (4) (Imran, 2016):

 F1-score= 2 * (Precision * Recall) / (Precision+ Recall) (4)

Where:

 True Positives (TP): The result is the correctly predicted positive, meaning the actual

results value and predicted result is "yes".

 True Negatives (TN): The result is the correctly predicted negative, meaning the

actual result value and the predicted result is "No".

 False Positives (FP): This means the actual result is no and the predicted result is yes.

 False Negatives (FN): This means that the actual result is yes and predicted result in

no.

38

4 Chapter Four

Experimental Results

4.1 Overview

This chapter presents the result of the experiment study, which has conducted to validate

our module. The evaluation has performed with LSTM neural network and RNN.

The ROC curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot

calculated to estimate model performance.

4.2 Results of LSTM

The LSTM trained on a training dataset with 6 epochs. First, the data was pre-processed.

The model trained on extracted features. Then, to estimate model performance, the ROC

curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot should

calculated.

4.2.1 ROC Curve of LSTM

The ROC curve of the LSTM model represented in the figure below. ROC curve is

constructed by plotting the true positive rate (TPR) against the false positive rate (FPR

The x-axis represents FPR and the y-axis represents TPR. The curve starts from zero and

moves towards one and the closer the curve comes to the 45-degree diagonal of the ROC

space, the less accurate the test (Skleran, 2019). The moving graph indicates the

exceeding state of the graph. The false-positive rate is almost equal to one and the true

positive rate is almost equal to one. In addition, the accuracy plot shows test and train

accuracy.

39

Figure 4.1: ROC Curve.

4.2.2 Confusion Matrix of LSTM

The confusion matrix of the LSTM model shown in the table below. The y-axis represents

the true label and the x-axis presents the predicted labels. The confusion matrix depicts

that out of 203 0-class examples 156 predicted accurately and 47 examples predicted

wrongly by model. For one class, out of 268 examples, 252 correctly predicted and 16

examples predicted wrong. Overall, the accuracy of the model is very high.

Table 4.1: The Confusion Matrix Of The LSTM Model

N=467
Predicted

NO

Predicted

YES

Actual: NO TN=156 FP=47 203

Actual:YES FN=12 TP=252 264

 168 299

40

4.2.3 Measure Values Applied on LSTM

The table below shows the performance results of the LSTM model based on the level of

severity. The LSTM model score accuracy rate of 0.87.

Table 4.2: Measure Values Applied on LSTM

 Precision Recall F1-Score

Class 0 0.91 0.77 0.83

Class 1 0.84 0.94 0.89

Macro Average 0.87 0.85 0.86

Weighted Average 0.87 0.87 0.86

4.2.4 Training and Validation Accuracy Plot of LSTM

The LSTM Neural Network experiments after the training epoch have been tried with a

model in Keras frameworks that run in Python (Keras, 2019).

The validation data accuracy and loss could modified in various cases in the Keras model.

The loss must be lower and higher as each epoch increases. The following cases will

occur with Keras loss of validity and Keras accuracy (Brownlee, 2017):

 Validation loss starts increasing, validation accuracy starts decreasing, and the model

will be cramming values and not learning.

 Validation loss and validation accuracy start increasing, the model will be over fitting

probability values when softmax used in the output layer.

 Validation loss starts decreasing, validation accuracy starts increasing. The model is

learning properly.

41

The following figure shows the training and validation accuracy plot of the LSTM model,

the x-axis shows the epoch value and the y-axis depicts the accuracy of the model against

each epoch. The model accuracy with the training data set indicated by blue dots and the

red line indicates model accuracy with validation data set. The results of this figure show

that the performance of the model is high.

Figure 4.2: Training and Validation Accuracy of LSTM.

4.2.5 Training and Validation Loss Plot of LSTM

The loss plot of the LSTM model also generated that tells the accuracy of validation and

training. The x-axis shows the Epoch value and the y-axis depicts the loss of the model

against each epoch. The model loss with the training dataset indicated with blue dots and

the model accuracy with the validation dataset denoted with a red line. The loss rate of

the model is quite low on the training set as well as on the validation set.

42

Figure 4.3: Loss Plot of LSTM.

4.2.6 Accuracy Plot of LSTM

The accuracy graph shows the validation accuracy. The x-axis of the graph shows the

value of the Epoch and the y-axis shows the model accuracy of every epoch. The accuracy

rate of the model is 0.89.

Figure 4.4: Accuracy Plot.

43

4.3 Results of RNN

The RNN trained on a training dataset with 6 epochs. First, the data was pre-processed.

The model trained on extracted features. Then, to estimate model performance, the ROC

curve, F1-score, Precision-Recall, confusion matrix, accuracy plot, and loss plot should

calculated.

4.3.1 ROC Curve of RNN

The ROC curve of the RNN model represented in the figure below. ROC curve is

constructed by plotting the true positive rate (TPR) against the false positive rate (FPR

The x-axis represents FPR and the y-axis represents TPR. The curve starts from zero and

moves towards one and the closer the curve comes to the 45-degree diagonal of the ROC

space, the less accurate the test (Skleran, 2019). The moving graph indicates the

exceeding state of the graph.

The false-positive rate is almost equal to one and the true positive rate is quite low. The

true positive rate depicts the examples that are true and predicted as true. The true

negative rate depicts the examples that are true but predicted false.

Figure 4.5: Roc Curve for RNN.

44

4.3.2 Confusion Matrix of RNN

The confusion matrix of the RNN model shown in the table below. The y-axis represents

the true label and the x-axis presents the predicted labels. The confusion matrix depicts

that out of 203 class examples 28 predicted accurately and 175 examples predicted

wrongly by model. For one class, out of 268 examples, 244 correctly predicted and 24

examples predicted wrong. In general, the accuracy of the RNN model is very low.

Table 4.3. The Confusion Matrix Of The RNN Model

N=471
Predicted

NO

Predicted

YES

Actual: NO TN=28 FP=175 203

Actual:YES FN=24 TP=244 268

 52 419

4.3.3 Measure Values Applied on RNN

The table below shows the performance results of the RNN model based on the level of

severity. The RNN model score accuracy rate of 0.58.

Table 4.4. Measure Values Applied on RNN

 Precision Recall F1-Score

Class 0 0.54 0.14 0.22

Class 1 0.58 0.91 0.71

Macro Average 0.56 0.52 0.46

Weighted Average 0.56 0.58 0.50

45

4.3.4 Training and Validation Accuracy Plot of RNN

The RNN model accuracy plot is also generated which indicates the validation and

training accuracy. The x-axis of the figure shows the importance of the Epoch and the y-

axis shows the model accuracy of every epoch. A dark green line used to represent model

accuracy with the training data set and a light green line to indicate model accuracy with

a validation data set. On both training and validation sets the performance of the model

is low.

Figure 4.6: Training and Validation Accuracy Plot of RNN.

4.3.5 Training and Validation Loss Plot of RNN

The loss plot of the model also generated that tells the accuracy of validation and training.

The x-axis of the graph shows the Epoch value and the y-axis depicts the loss of the

model against each epoch. The model loss with the training dataset denoted with dark

green and the model accuracy with the validation dataset denoted with a light green line.

The loss rate of the model is high on training (in green colour) and validation (in yellow

colour) sets.

46

Figure 4.7: Loss Plot of LSTM.

4.3.6 Accuracy Plot of RNN

The accuracy plot tells the accuracy of validation. The x-axis of the graph shows the

Epoch value and the y-axis depicts the Accuracy of the model against each epoch. The

heights accuracy rate achieved by the model is 0.60

Figure 4.8: Accuracy Plot of RNN.

47

4.4 Comparison between LSTM and RNN

In this section, a comparison made between the algorithms that used in this thesis in

order to predict the severity of the bug reports.

The following table shows the accuracy of the work of each of the algorithms, in addition

to the accuracy achieved by each of these algorithms. The results show that the LSTM

algorithm with score accuracy rate of 0.85 was the best among the algorithms used,

followed by the RNN algorithm that achieved the lowest accuracy rate.

Table 4.5 Comparison between LSTM and RNN Results.

Algorithm Accuracy

LSTM 0.85

RNN 0.58

A time computation-based comparison between LSTM, and RNN also performed as

shown in the figure below. The x-axis shows the model name and the y-axis shows the

calculation time for each model. It analyzed that the computation time of RNN is better

than and LSTM. Hence, but as discussed, the LSTM performs much better.

Figure 4.9:A Time Computation-Based Comparison between LSTM and RNN.

48

5 Chapter Five

Conclusions And Recommendations

5.1 Overview

This chapter summarizes the main purpose of this thesis. Section 5.2 provides

conclusions that deduced based on our proposed bug severity prediction framework, and

section 5.3 reviews the further of the study.

5.2 Conclusions

This thesis provides a framework for automatically assign the severity of bug for bug

reports to avoid wasting limited time and resources during the software testing process.

The proposed framework involves using text pre-processing (tokenization, stop words

and stemming) and then extracting an important keyword from the bug report description,

this model trained on 80% of the dataset, and then tested on 20%.

The proposed framework validated on datasets extracted from JIRA using a TETCO

closed-source project dashboard with over 2,300 bug reports to get better performance

and higher accuracy.

The results of our experiments indicate that the proposed framework based on the LSTM

algorithm achieved correctly predicts priority of bug reports and performance can

significantly increase instead of RNN.

In addition, the comparison of the models shows that the LSTM performed better than

the RNN, and the LSTM scored an accuracy rate of 0.858 while the RNN scored an

accuracy rate of 0.58.

49

5.3 Future Work

In future work, Bi-directional LSTM and other deep networks-based models can applied

to improve the performance of detection. Dataset can re-labelled with different annotators

because the current data are not more distinguishable between the severities and non-

severe. A built model can deploy to real-world applications.

50

6 References

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug? Paper presented

at the Proceedings of the 28th international conference on Software engineering.

Beran, J., Schützner, M., & Ghosh, S. (2010). From short to long memory: Aggregation

and estimation. Computational statistics & data analysis, 54(11), 2432-2442.

Bibyan, R., Anand, S., & Jaiswal, A. (2020). Assessing the Severity of Software Bug

Using Neural Network Strategic System Assurance and Business Analytics (pp.

491-502): Springer.

Bilalli, B., Abelló, A., Aluja-Banet, T., & Wrembel, R. (2018). Intelligent assistance for

data pre-processing. Computer Standards & Interfaces, 57, 101-109.

Brownlee, J. (2017). How to Diagnose Overfitting and Underfitting of LSTM Models. 1

September 2017.

Bugzilla. (2021). Bugzilla Bug-Tracking System. Retrieved 1/1/2021 Available at:

https://wiki.mozilla.org/BMO/UserGuide/BugFields Last visit: 1/1/2021.

Burkov, A. (2019). The hundred-page machine learning book (Vol. 1): Andriy Burkov

Canada.

Chauhan, A., & Kumar, R. (2020). Bug Severity Classification Using Semantic Feature

with Convolution Neural Network Computing in Engineering and Technology

(pp. 327-335): Springer.

Chawla, I., & Singh, S. K. (2014). Automatic bug labeling using semantic information

from LSI. Paper presented at the 2014 Seventh International Conference on

Contemporary Computing (IC3).

51

Cui, J., Long, J., Min, E., Liu, Q., & Li, Q. (2018). Comparative study of CNN and RNN

for deep learning based intrusion detection system. Paper presented at the

International Conference on Cloud Computing and Security.

Dabade, T. D. (2012). Information technology infrastructure library (ITIL). Paper

presented at the Proceedings of the 4th National Conference.

Dagao, D., & Yang, G. (2018). Preprocessing technology of consuming big data based

on user interest with internet of location mining. International Journal of

Computers and Applications, 1-6.

Domingues, R., Filippone, M., Michiardi, P., & Zouaoui, J. (2018). A comparative

evaluation of outlier detection algorithms: Experiments and analyses. Pattern

Recognition, 74, 406-421.

Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent neural network

grammars. arXiv preprint arXiv:1602.07776.

Hamdy, A., & El-Laithy, A. (2019). Smote and feature selection for more effective bug

severity prediction. International Journal of Software Engineering and

Knowledge Engineering, 29(06), 897-919.

He, J., Xu, L., Yan, M., Xia, X., & Lei, Y. (2020). Duplicate bug report detection using

dual-channel convolutional neural networks. Paper presented at the Proceedings

of the 28th International Conference on Program Comprehension.

Iivari, J., Hirschheim, R., & Klein, H. K. (1998). A paradigmatic analysis contrasting

information systems development approaches and methodologies. Information

systems research, 9(2), 164-193.

Imran, Z. (2016). Predicting bug severity in open-source software systems using scalable

machine learning techniques.

52

ISTQB. (2019). from International Software Testing Qualifications Board - Foundation

Level https://www.istqb.org/ last visited at:5/1/2021.

Jindal, R., Malhotra, R., & Jain, A. (2017). Prediction of defect severity by mining

software project reports. International Journal of System Assurance Engineering

and Management, 8(2), 334-351.

JIRA. (2020). JIRA Software Developed By Atlassian Retrieved 14/1/2020, from https:/

www.atlassian.com/software/jira. Issue workflows available at:

https://confluence.atlassian.com/adminjiracloud/issue-workflows-

844500760.html Last visit: 14/1/2020.

Junior, J. R. B., & do Carmo Nicoletti, M. (2019). An iterative boosting-based ensemble

for streaming data classification. Information Fusion, 45, 66-78.

Kaur, A., & Jindal, S. G. (2019). Text analytics based severity prediction of software

bugs for apache projects. International Journal of System Assurance Engineering

and Management, 10(4), 765-782.

Kaur, J., & Buttar, P. K. (2018). Stopwords removal and its algorithms based on different

methods. International Journal of Advanced Research in Computer Science, 9(5),

81.

Keras. (2019). Deep Learning library for Theano and TensorFlow. https://keras.io/,

Accessed on 20 DEC 2020. . from Deep Learning library for Theano and

TensorFlow. https://keras.io/, Accessed on 01 May 2019.

Kukkar, A., Mohana, R., & Kumar, Y. (2020). Does bug report summarization help in

enhancing the accuracy of bug severity classification? Procedia Computer

Science, 167, 1345-1353.

http://www.istqb.org/
http://www.atlassian.com/software/jira

53

Kumari, M., Sharma, M., & Singh, V. (2018). Severity assessment of a reported bug by

considering its uncertainty and irregular state. International Journal of Open

Source Software and Processes (IJOSSP), 9(4), 20-46.

Menzies, T., & Marcus, A. (2008). Automated severity assessment of software defect

reports. Paper presented at the 2008 IEEE International Conference on Software

Maintenance.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning:

MIT press.

Nádvorníková, O. (2020). The use of English, Czech and French punctuation marks in

reference, parallel and comparable web corpora: a question of methodology.

Linguistica Pragensia, 30(1), 30-50.

Nagwani, N. K., & Verma, S. (2011). Software bug classification using suffix tree

clustering (STC) algorithm. International Journal of Computer Science and

Technology, 2(1), 36-41.

Nagwani, N. K., & Verma, S. (2012). CLUBAS: an algorithm and Java based tool for

software bug classification using bug attributes similarities.

NLTK. (2017). Natural Language Toolkit (NLTK) , preprocessing text library building

Python programs . By Steven Bird, Edward Loper, Ewan Klein

https://www.NLTK.org/. Last visit: 23/1/2020.

Pandey, N., Hudait, A., Sanyal, D. K., & Sen, A. (2018). Automated classification of

issue reports from a software issue tracker Progress in Intelligent Computing

Techniques: Theory, Practice, and Applications (pp. 423-430): Springer.

Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., & Illahi, I. (2019). Deep neural network-

based severity prediction of bug reports. IEEE Access, 7, 46846-46857.

http://www.nltk.org/

54

Sharma, M., Kumari, M., Singh, R., & Singh, V. (2014). Multiattribute based machine

learning models for severity prediction in cross project context. Paper presented

at the International Conference on Computational Science and Its Applications.

Skleran. (2019). from Function computes subset accuracy: between true positive and false

positivehttps://scikitlearn.org/stable/modules/generated/sklearn.metrics.accuracy

_score.html. Last visit: 9/12/2019.

Somasundaram, K., & Murphy, G. C. (2012). Automatic categorization of bug reports

using latent dirichlet allocation. Paper presented at the Proceedings of the 5th

India software engineering conference.

Sun, Y., Song, H., & Jiao, W. (2009). Towards Architecture-centric Collaborative

Software Development. Paper presented at the SEKE.

Tan, Y., Xu, S., Wang, Z., Zhang, T., Xu, Z., & Luo, X. (2020). Bug severity prediction

using question-and-answer pairs from Stack Overflow. Journal of Systems and

Software, 110567.

Tensorflow. (2015). from Develop and train ML models, by Google Brain Team, written

in: Python, C++, CUDA, 2015 https://www.tensorflow.org/ Last visit:

15/12/2020.

TETCO. (2020). Tatweer for Educational Technologies Companey (Tetco), Riyadh,

Saudi Arabia, Available At: https://tetco.sa/ar/default.aspx. Last visited at

:10/1/2021.

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep

learning for computer vision: A brief review. Computational intelligence and

neuroscience, 2018.

Wang, F., & Tax, D. M. (2016). Survey on the attention based RNN model and its

applications in computer vision. arXiv preprint arXiv:1601.06823.

http://www.tensorflow.org/

55

Xie, Q., Wen, Z., Zhu, J., Gao, C., & Zheng, Z. (2018). Detecting duplicate bug reports

with convolutional neural networks. Paper presented at the 2018 25th Asia-

Pacific Software Engineering Conference (APSEC).

Yang, C.-Z., Chen, K.-Y., Kao, W.-C., & Yang, C.-C. (2014). Improving severity

prediction on software bug reports using quality indicators. Paper presented at

the 2014 IEEE 5th International Conference on Software Engineering and Service

Science.

Yang, C.-Z., Hou, C.-C., Kao, W.-C., & Chen, X. (2012). An empirical study on

improving severity prediction of defect reports using feature selection. Paper

presented at the 2012 19th Asia-Pacific Software Engineering Conference.

Yang, G., Min, K., Lee, J.-W., & Lee, B. (2019). Applying Topic Modeling and

Similarity for Predicting Bug Severity in Cross Projects. TIIS, 13(3), 1583-1598.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329.

Zhang, X.-D. (2020). Machine learning A Matrix Algebra Approach to Artificial

Intelligence (pp. 223-440): Springer.

