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Detection Bug Severity Level using Machine Learning Techniques 

Prepared by: Hamza AL-Jundi  

Supervised by: Dr. Sherifa Murad 

Abstract 

Software maintenance is the process of modifying a component or system after 

delivery, in order to correct defects, improve quality characteristics, or adapt to a 

changing environment (ISTQB, 2019). To reduce maintenance cost the quality 

assurance engineers ensure that the software meets the requirements of the software 

owner and the user perspective by applying some testing techniques, such as usability 

testing, and performance testing.  

When the testing team finds a bug, the bug reported to the development team, and 

after the bug is resolved, the testing team should re-test the reported bugs. This process 

will repeat each time the quality assurance team members find any bug. Bugs report 

should contain all the needed information to the developers, such as the steps to 

reproduce the bug, the bug priority and severity, and a brief description of it.  

The most common point that makes software quality tester and developers' life 

harder is the limitation of time and human resources, which may lead him/her to 

discard some of the reported bugs, to take care of bugs that are more critical. This 

study aims to overcome the mentioned problems, by automating the whole process of 

assigning the severity level on newly reported bugs to replace the manual severity 

assigning.  

This thesis focuses on the detection of bugs severity (sever or non-sever), using 

machine learning approach, the features of the bugs report will be cleaned using text 

mining techniques such as (tokenization, stemming), and then a comparison between 

(LSTM and RNN)  to evaluate which technique is giving the best result in assigning 

bugs severity.  

The implementation divided into four main phases, in the first phase, the data set 

will extracted, then in the second step, dataset pre-processing will be done, the third 

phase is feature selection and in the last phase, the framework will propose a prediction 

and it called the prediction phase. The bug reports dataset extracted from the repository 

of JIRA related to closed-source projects developed by TETCO Company located in 

Riyadh, Saudi Arabia; the datasets mainly contain four features including project 



xii 

 

 

name, bug id, bug description, and the severity level of the bug. After model training, 

the different evaluation measures used for evaluating model performance.  According 

to the experimental results, we achieved a better result using the LSTM neural network 

instead RNN. 

Keywords: Bug Severity, Long Short-Term Memory, Recurrent Neural Network, 

Neural Network.  
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 تعيين مستوى الخطورة للأخطاء باستخدام تقنيات التعلم الآلي
 حمزة الجندي. إعداد:

 شريفة مراد.إشراف الدكتورة: 
 الملخص

يعرف خطأ البرنامج بأنه مجموعة المشاكل التي تحدث خلال مراحل بناء المشروع والتي 
تؤدي إلى نتيجة غير صحيحة أو غير متوقعة. في عملية اختبار البرمجيات، تعد المرحلة الرئيسية 

لى وقت ويًا إهي التنبؤ بخطورة تقارير الأخطاء. ومع ذلك، يحتاج تصنيف تقارير الأخطاء يد
 وموارد من ذوي الخبرة. مما يؤدي الى تأخير إصلاح الأخطاء ذات الأولوية العالية.

في هذه الاطروحة، تم إقتراح إطاراً لتعيين مستوى الخطورة المناسب لتقارير الأخطاء، بإسناد 
اء نقيمة لخطورة تقرير الخطأ، والهدف من هذا الإطار هو تجنب استغراق الوقت المستهلك أث

تعيين خطورة الاخطاء بشكل يدوي بالاضافة الى تحسين الدقة والفعالية في التنبؤ خطورة تقارير 
 الأخطاء.

تم التحقق من فعالية هذا الإطار وصحته بتجربته على مجموعات بيانات مستخرجة من 
JIRA  باستخدام لوحة معلومات شركة TETCO  وهو مشروع مغلق المصدر لم يتم إستخدامه

تقرير خطأ، للحصول على أداء أفضل وتحقيق دقة  5522أبحاث سابقة، ويحتوي على في 
أعلى.تم إجراء التجارب على مجموعة البيانات الحقيقية من خلال التعلم العميق بإستخدام 

 (.RNN(، و )LSTM: الذاكرة العصبية طويلة المدى )ماخوارزميتين وه

اص بتعيين مستوى الشدة المناسب لتقارير تشير نتائج تجربتنا الى أن إطار العمل الخ
الأخطاء والذي يستند الى التعلم العميق، بأنه يتنبأ بخطورة تقارير الأخطاء بدقة مرتفعة، حيث 

، أما نسبة 0.858 :تصل الى LSTMأظهرت النتائج نسبة التنبؤ بمستوى الخطورة إستناداً الى 
 LSTMمما يعني أن خوارزمية ، 0.58تصل الى:  RNNالتنبؤ بمستوى الخطورة إستناداً الى 

 .RNNمية بخوارز  ناسب لتقارير الأخطاء مقارنةكانت الأكثر دقة في التنبؤ بمستوى الخطورة الم

الكلمات المفتاحية: خطورة الأخطاء، الذاكرة العصبية طويلة المدى، الشبكة العصبية المتكررة، 
الشبكة العصبية.
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1 Chapter One 

Introduction 

1.1 Research Context 

This thesis focuses on the detection of bugs severity (severe or non-sever). Using machine 

learning approach, the features of the bugs report will be cleaned using text mining 

techniques such as tokenization and stemming, and then the comparison between long-

term memory and recurrent neural network to evaluate the technique and determine 

which gives the best result in assigning bugs severity. 

1.2 Background 

In today’s world, a quick way to predict the severity of bug reports was necessary in order 

to fix these bugs quickly.  

The idea of the proposed framework appeared due to the large increase in the submitted 

bug reports with limited resources, whether it was human resources such as developers, 

or the time consumed in determining priority. 

Therefore, there was a great need to suggest an important framework in order to focus on 

high severity bug reports and resolve them quickly. 

The framework is becoming increasingly important, as a unique dataset used to build this 

framework, extracted from closed source projects TETCO containing more than 2355 

bug reports not used in previous research, provided by the JIRA dashboard. 

1.3 Problem Statement 

In today’s agile world is very important to deliver the software in less time without 

affecting the quality of software. It is the job of bug trigger to classify the bugs based on 
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criticality. In a personal communication, Mozilla trigger highlighted that “Every day, 

almost 300 bugs appear that need triaging. 

This study aims to automate the bug severity detection process to replace the manual 

severity assigning.  

1.4 Research Aims and Objectives 

This thesis aims to create an efficient system that can detect the bug severity in software. 

To achieve this aim different set objectives listed below: 

 Automate the bug severity detection process to replace the manual severity assigning.  

 Exploring data pre-processing technique and choosing the best technique of pre-

processing of the dataset.  

 Training and testing model on training and validation dataset.  

 Overcome the limitation of existing methodologies. 

 Comparing the performance of both RNN and LSTM.   

1.5 Research Questions 

The problem in this thesis can filtered in the following questions: 

 What is the performance of the proposed framework? 

 What will be the accuracy of the proposed framework? 

1.6 Research Methodology 

In this thesis, the general study methodology used is the positivist approach. This 

methodology uses hypotheses and empirical finding (Iivari, Hirschheim, & Klein, 1998), 

so it would be appropriate for the thesis. The method used in this thesis includes several 

steps, including: 

 Define the problem. 
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 Formulate a hypothesis. 

 Prepare the experiment and produce the details. 

 Collect the information and perform pre-processing. 

 Evaluate the model. 

 Interpret the conclusions from the model. 

There are four phases of the adopted research methodology in this thesis as shown on in 

Figure 1.1 include the literature review, the literature analysis, design and modelling and 

performance evaluation.  

 

Figure 1.1: The Research Methodology. 

• Review the literature that used machine
learning techniques in the bug reports
predictions .

Phase One: Literature Review 

• Determine the most important algorithms
and features used in this field.

Phase Two: Literature 
Analysis

• Data collection and data pre-processing
and build the model.

Phase Three: Building The 
Model

• System validation and results analysis. Phase Four: Performance 
Evaluation 
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1.7 Thesis Organization 

The rest of this thesis organized in the following structure: 

 Chapter Two: Reviews the theoretical background and related work of relevant 

research papers in the bug reports and explains the importance of predicting bug 

report severity. In addition, this chapter introduces the most common machine 

learning methods that can used to predict bug report severity. 

 Chapter Three: Provides a detailed explanation of the prediction process of the bug 

report, and it provides an overview of the dataset used in this study and its source, in 

addition to a detailed presentation of the proposed framework steps that were used in 

this thesis. 

 Chapter Four: Explains the most important results of this thesis and compares the 

results of the algorithms used. In addition, this chapter presents a comparison between 

the study that conducted in this thesis and a previous study. 

 Chapter Five: Presents the conclusion and future works. 
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2 Chapter Two 

Background and Related work 

2.1 Overview 

This chapter discusses the theoretical background for bug severity, including the 

definition of the bug, its life cycle, and the difference between the severity and priority 

of the bug. This chapter provides an overview of machine learning, in addition to giving 

a brief overview of many of the current research related to machine learning applied to 

predicting and assigning the bug severity. 

2.2 What is Bug? 

According to ISTQB, the bug is an imperfection or deficiency in a work product where 

it does not meet its requirements or specifications (ISTQB, 2019).  

The Information Technology Infrastructure Library, defined the bug as: event that is not 

part of the standard operation of service and causes an unplanned interruption or decrease 

the quality of service (Dabade, 2012). 

2.3 Bug Severity and Priority 

Users through issue tracking systems often submit bug reports. The bug report can 

describe the particular case when a software bug occurs and the bug report includes bog 

regeneration information, a bug report contains several attributes: the bug-id, submission 

date, the status, the priority, the severity, the summary, and the description. 

The severity is how austere a bug is, it's an important attribute of a bug report that decides 

how quickly it should be resolved (Kukkar, Mohana, & Kumar, 2020), also it can be used 

to indicate whether a bug is an enhancement request. Bug severity terms can be expressed 
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in different ways depending on the bug tracking system that used, as follows (Bibyan, 

Anand, & Jaiswal, 2020): 

 Bug Severity in Bugzilla indicates how severe the problem is, it can vary from trivial, 

minor, normal, major, and critical to blocker, the blocker means the application 

unusable. Priority, however, determines the urgency for repairing a bug. In Bugzilla, 

the combination of priority and severity defines the importance of a Bug (Bugzilla, 

2021). 

 Bug Severity in JIRA is referred to as a priority, it indicates how important the bug, 

it can vary from the highest priority which is a blocker to the lowest priority which is 

minor in relation to other bugs. 

 Bug Severity in Google Issue Tracker is referred to as priority, which indicates how 

priority the bug is, and it can vary from P0 which means the bug needs to be addressed 

immediately to P4 which means the bug fixing can be postponed in relation to other 

bugs(Pandey, Hudait, Sanyal, & Sen, 2018). 

 

Bug Severity in JIRA (JIRA, 2020) can be divided into five levels including Blocker, 

Critical, Major, Minor, and Low, as shown in figure 2.1.Each of these levels will be 

defined in detail as follows: 

 

Figure 2.1: Severity Levels. 

Low

Minor

Major

Critical

Blocker
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 Blocker: The bug currently makes the system or functionality unavailable. 

 Critical: The bug affects sensitive or critical data and there is no way to avoid it. 

 Major: The bug has a big impact on features or main data and solutions are available, 

but it is not clear or hard to implement. 

 Minor: This bug affects minor or non-critical data and a reasonable solution is 

available. 

 Low: The bug does not affect functions or data, nor does it affect performance or 

efficiency. It is only inconvenience and does not require any solution. 

 

The priority in the bug report is how quick a system bug is. It demonstrates the urgency 

of handling and deleting a bug. It really is a test of the way that the bug is priority in the 

debugging hierarchy. Bug goals are appropriately allocated to scheduling a software 

development life cycle (Bibyan et al., 2020). 

The priority can be divided into four levels including Immediate, High, Medium, and 

Low (JIRA, 2020), as shown in figure 2.2.  

 

Figure 2.2: Priority Levels. 

 

 Immediate: a bug that is of the highest priority and should fixed as soon as possible. 

 High: the best bug fixed when the next build cycle occurs. 

Low

Medium

High

Immediate
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 Medium: this type of bug takes precedence over low-priority bug. It should fixed but 

it can placed on the next iterations or release cycle if necessary. If necessary. 

 Low: fixed bugs are the lowest priority after all of the high and medium-priority bugs 

are fixed. 

2.4 Bug Severity VS Priority 

Bug severity and the bug priority in software testing are two widely used terms; usually 

they are synonymously use, which is wrong. The severity is related to standards and 

functionality of the system; whereas, the priority is related to scheduling so the severity 

of a bug is determined by quality analyst, test engineer; whereas, a priority of a bug is 

determined by the product manager or client (Ramay, Umer, Yin, Zhu, & Illahi, 

2019).The difference between the two terms is shown in the following figure: 

 

Figure 2.3: Bug Severity VS Priority. 

2.1 Bug Reports Lifecycle 

The lifecycle of bug reports contains the entire bug that has discovered to start through a 

process. Bug reports go through a series of status, this state varies from one project to 

another (Xie, Wen, Zhu, Gao, & Zheng, 2018). Where the bug reports begin when the 

bug is found and ends when the bug reports are closed (JIRA, 2020). 

Bug Severity:

The degree of impact
that a defect has on the
system.

Bug Priority:

The order of severity which
has impacted the system.
degree of impact that a defect
has on the system.



9 

 

The life cycle of a bug contains a set of states that any detected bug goes through, and 

the number of these cases depends on the project itself. In this thesis, the life cycle of the 

bug reports has divided into five states including: 

 New  

 Assigned  

1. Rejected or 

2. Deferred or  

3. Duplicate 

4. Fixed 

 Retested 

 Verified or Re-Opened 

 Closed  

The figure bellow illustrates the lifecycle of bug reports from the JIRA software (JIRA, 

2020). 

 

Figure 2.4: Life Cycle Of Bug Reports (JIRA, 2020). 
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Once the quality-assurance member opens a bug, the status of the bug is new, it will 

remain new until a lead assigns it to a developer team member, and it will be converted 

to assigned. 

The assigned developer has various options for converting bug status to, if it is not a bug, 

the status is converted to reject, if the submission bug is not really that severe, the status 

of the bug is converted to deferred and resolved during future releases. 

If two bugs of the same scenario are record, the developer can make the status of this bug 

duplicate. 

If a new bug is resolve by a developer, it changes the status to fixed, and then it will go 

back to the qi team member to retest it, if verified and solved, the statues will closed, 

else the status will change to re-opened. 

2.5 Bug Reports Content 

The Bug reports include set of components which provide developers with knowledge to 

help reproduce and resolve the problem (Bugzilla, 2021), The bug reports included a 

combination of factors including (report id, summary, description, project name, priority, 

severity, attachment, status, sprint number, and reporter name), all of these factors are 

explained in the following table: 

Table 2.1.Bug Report Content 

Field Definition 

Report Id A unique identifier. 

Summary A line of word describing a bug. 

Description 
More details that help the developer to reproduce the bug, 

such as test step, expected and actual results. 

Project Name The name of the project the reported bug relates to. 
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Priority 
Represented in three words, low, medium, high and it says 

how quickly this bug should be resolved. 

Severity 

Represented in four common words, low, medium-high, and 

critically based on the impact of this bug on the system 

functionality. 

Attachment A screenshot or video shows the bug to the developer. 

Status The status of the bug. 

Sprint Number Shows during which sprint this bug detected. 

Reporter Name The person who filed this bug. 

 

2.6 Machine Learning 

Machine Learning (ML) is an area of study that focuses officially on the hypothesis, 

performance and properties of learning systems and algorithms. ML uses computer 

capacities by integrating calculations and data recovery to make it seem to understand 

and make logical choices, not only according to a particular strategy, but also to the earlier 

behaviour or responses (Mohri, Rostamizadeh, & Talwalkar, 2018). 

The term machine learning described as a method of making a system sufficiently 

efficient that the different case uses can predicted accurately with experience. Machine 

learning algorithms allowed important "regularities" to be discover in large sets of data. 

It is regard as a research information-technology field rapid growth is due to 

developments in data analysis. 

ML algorithms can divide primarily into two categories, the first category is supervised 

machine learning, and the purpose of supervised machine learning is to predict the right 

label for the newly presented information through assessments and observations, which 

it then classifies according to the training set.  
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And the second category is unsupervised machine learning, which implies that the data 

are not accessible for training, the aim of unsupervised machine learning is to obtain 

uncompelled data structures through analysing a similar approach between pairs of items, 

which are generally connected to the approximate density or data clustering (Kukkar et 

al., 2020). 

Machine Learning (ML) is a discipline of AI that handles the development and analysis 

of a model from the information obtained from the data .The various applications of ML 

include classification and regression (Zhang, 2020). The ML classified into three main 

kinds depend on the existent of labelled samples, which include unsupervised learning, 

semi-supervised learning, and supervised learning. Moreover, ANNs, Naive Bayes 

classifier, SVMs, Logistic and Linear regression are the popular utilized ML algorithms 

(Burkov, 2019). 

Deep Learning is a sophisticated type of ML with various levels of abstraction of data at 

several processing levels (Voulodimos, Doulamis, Doulamis, & Protopapadakis, 2018). 

Deep Learning can learn the complex distributions of entered samples via back-

propagation and point out how the internal parameters updated at each level. The 

commonly applied deep learning comprises Recurrent Neural Networks (RNNs), CNNs, 

DBNs, and auto-encoders. 

According to (He, Xu, Yan, Xia, & Lei, 2020), there are three significant justifications 

for deep learning outstanding. First, a recent increase in research on machine learning. 

Second, affordable computing hardware. Finally, processing capabilities (GPU) are 

grown sharply. 

This thesis used the deep neural network algorithm including Long Short-Term Memory, 

and K-Nearest Neighbours to predict the severity of bug reports. 
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2.6.1 Recurrent Neural Network  

The Recurrent Neural Network (RNN) is a type of artificial neural network that uses 

sequential or time-series data. These are frequently use for normal or transient issues 

including language translation, natural languages processing, and speech recognition, and 

they are used in popular applications such as Siri, speech recognition and Google 

Translate (Zaremba, Sutskever, & Vinyals, 2014). 

There are several advantages to using RNN, including (Wang & Tax, 2016): 

 It is the first algorithm that, due to the internal memory, remembers its input, 

which makes it well suited to machine learning problems involving sequential 

data. 

 RNN has redundant connection in hidden state. This recurring constraint ensures 

that the sequential information captured in the input data. That is, the dependency 

between words in the text while making predictions. 

 RNN has a "memory" that remembers all the information about what was 

calculated. 

 All RNNs have feedback loops in the repeating layer. This allows them to retain 

information in their "memory" over time. 

 

The RNN use training data, including Feedforward and CNNs. It can draw information 

from previous inputs to affect the current input and output by using its "memory." While 

CNNs assume that inputs and outputs are distinct, RNN output based on previous 

elements. Although future events can also help to evaluate the performance of the 

sequence, these events cannot taken into account in their predictions by unidirectional 

repetitive neural nets (Dyer, Kuncoro, Ballesteros, & Smith, 2016). The following figure 

show the RNN: 
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Figure 2.5: RNN. 

 

There are several types of RNN, which are (Cui, Long, Min, Liu, & Li, 2018): 

 One-to-one: image and predicate the class (NN). 

 One-to-many: one input and many outputs (take an image and give a description) 

 Many-to-one: take a sentence and predicate if it is positive or negative. 

 Many-to-many: take much input and predicate much output (translation of a 

sentence from Arabic to English as an example).  

2.6.2 Long Short-Term Memory  

Long short -term memory (LSTM) is a form of supervised learning use for deep learning 

to produce bandwidth prediction using historical measurements and to remember 

information for long periods. Can be used in prediction problems for learning to turn 

input data into a preferred response (Beran, Schützner, & Ghosh, 2010). LSTM 

remembers historic events, which saw un-important data and forgets them. The 
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corresponding information was select to save via different activation function layers 

called Internal Cell State Gates, as shown in the figure below:  

 

Figure 2.6: LSTM Layers. 

 

LSTM is considered a type of RNN that uses previous events to warn future events (Tan 

et al., 2020). A set of gates used to control when information enters the memory, when it 

has output, and when it forgotten, and these gates are: 

 Input gate: the input gate controls the flow of input activations into the memory 

cell. 

 Output gate: output gate controls the output flow of cell activations into the rest 

of the network. 

 Forget gate: scales the internal state of the cell before adding it as input to the cell 

through the self-recurrent connection of the cell, therefore adaptively forgetting, 

or resetting the cell’s memory. 

2.7 Related Works 

The literature has included significant work on the use of machine learning to determine 

the severity of bug reports, and some of these works will discusses in this section. 

Tim Menzies et al. study (Menzies & Marcus, 2008) is considered one of the first 

studies to predict the severity label of bug reports. A rule-based learning technique used 

to build a new tool called SEVERIS. SEVERIS relies on text mining and machine-

learning techniques applied to unstructured data of the bug report unstructured data, 
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which includes report summary and description. The automated prediction model for this 

study applied to the NASA-Project, and Project-Issue-Tracking-System (PITS). The 

results showed that the SEVERIS tool could applied to other open-source repositories 

such as Bugzilla, with a slight modification. 

Anvik et al. (Anvik, Hiew, & Murphy, 2006) mentioned its personal 

communication with a Mozilla triager that impacts: “Every day, almost 300 bug appear 

that need triaging. This is far too much for only the Mozilla programmers to handle”. 

Anvik discussed the possibility to construct severity predictors from the inserted text. For 

data sets with more than 30 examples of high severity issues, SEVERIS always found 

good issue predictors with high f-measures. 

Cheng-Zen et al (C.-Z. Yang, Chen, Kao, & Yang, 2014) studied the impact of 

four quality indicators of bug reports on severity prediction: stack traces, report length, 

attachments, and steps to reproduce. The authors used the Eclipse dataset in their 

empirical study. They concluded that examining the quality indicators in previous work 

could efficiently improve the prediction performance in most cases that used text 

information only. 

In  Yang et al (C.-Z. Yang, Hou, Kao, & Chen, 2012) study, they discussed the 

extent of the impact of specific features effectively on severity prediction. They selected 

their features Information Gain, Chi-Square, and Correlation Coefficient, based on the 

Multinomial Naive Bayes classification method. They used four open-source components 

in their experiment and used ROC curves to evaluate the measuring process. They 

concluded that selected features affect efficiency in severity prediction performance in 

most cases.  
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Meera Sharma et al (Sharma, Kumari, Singh, & Singh, 2014) developed a model 

to predict severity level of a reported bug based on multiple attributes namely priority, 

bug fix time, number of comments, number of bugs on which it is dependent, number of 

duplicates for it, number of members in cc list, summary weight and complexity of bug 

in a cross-project context. The authors used 5,859 bug reports in different open source 

platforms. The result shows that the proposed model can help to predict bug reports, 

which its historical data is not available, and provide accuracy in the range of 37.34 to 

91.63%, 94.99 to 100%, 44.88 to 97.86% and 61.18 to 95.99% for different classifiers. 

Imran et al (Imran, 2016) presented an approach, that combines feature extraction 

and, machine learning, to predict the severity of each bug, this approach depends on a 

keyword extraction text-mining algorithm for extracting keywords then it extracts the 

important keyword. The data set used in these classes included 4 different labels in every 

binary and multi-class, 90% refined data was used with machine learning algorithms and 

then the model was tested on 10% refined data and the result was better performance and 

higher classification precision -up to 90%-, data collection from Eclipse, Mozilla, 

GNOME and other systems. 

In Jindal (Jindal, Malhotra, & Jain, 2017) study, A different examination was 

performed on four datasets of NASA's PITS using three main methods including decision 

tree, Multi-Nominal Multivariate Logistic Regression (MMLR) and Multi-Layer 

Perception (MLP) Prediction models were fed in various top-k terms, and these terms 

were extracted from training and testing sets using an Information Gain (IG) feature 

selection. The results showed that the performance of the decision tree is consider the 

best of all previous methods in determining the severity of bug. 
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Madhu Kumari et al (Kumari, Sharma, & Singh, 2018), presented a new 

classification approach they used five attributes for each reported bug, namely CC count, 

Component, Operating system, number of comments, and priority, and from those 

attributes, they derived two attributes called summary weight and entropy. To enhance 

the classification process they applied six types of classifications namely: Naïve Bayes 

(NB), k-Nearest Neighbours (KNN), Random Forest (RF), Relative Neighbours Graph 

(RNG), Condensed Nearest Neighbour (CNN), and Multinomial Logistic Regression 

(MLR) to make their classifier, the data sites used were collected from PITS, Mozilla and 

Eclipse. After applying the classifier, they initialized, the result showed an improvement 

in F-measure performance in comparison with previous research works. 

Yang et al. (G. Yang, Min, Lee, & Lee, 2019) introduced a new technique, it’s an 

amalgamation between similarity using KL-divergence and topic modeling using LDA 

to define the severity of bug reports. In their research, they used 20,000 bug reports, those 

reports were collected from four open-source projects (Xamarin, Eclipse, Wireshark, and 

Mozilla) were assembled to validate their proposed technique. The result of applying their 

technique showed that their model attains better performance, from an accuracy 

perspective than other cutting-edge studies listed in their literature. 

Ramey et al. (Ramay et al., 2019) Proposed a deep neural network based 

automatic approach for the severity prediction of bug reports. This approach applies a 

deep learning model, natural language techniques, and emotion analysis on the given 

dataset for the severity prediction of bug reports. In addition, the approach automates the 

severity assessment process and helps users by subtracting the severity assignment step 

from bug reporting. This approach was evaluate on the history- data of open source 

products from Eclipse and Mozilla, and the results of cross-product show that the 
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approach outperforms the state-of-the-art approaches, because it improves the f-measure 

by 7.90%. 

Arvinderet al (A. Kaur & Jindal, 2019) evaluated the performance of ten different 

machine learning algorithms, which are naive Bayes, KNN, SVM, maximum entropy, 

random forest, decision tree, bagging, boosting, Glmnet and SLDA, in terms of precision, 

recall, and accuracy at the system-level and component-level. The evaluation conducted 

in thirteen Apache projects that are automatically extract by BRCS tools. The result 

shows that the Boosting algorithm performed best in twelve projects with an accuracy of 

81% to 98% followed by a random forest of 75% to 97%, while Glmnet and SLDA 

achieved the most accurate results among other machine learning algorithms. In addition, 

the prediction of severity at component level gives better results than system-level 

prediction as Component’s frequent terms are more specific than system-level frequent 

terms which in turn give better results than Inter-system level prediction. 

Hamdy (Hamdy & El-Laithy, 2019) proposed a framework for predicting fine-

grained severity levels which utilize a Minority Over-sampling Technique “SMOTE”, to 

balance the severity classes, and a feature selection scheme, to reduce the data scale and 

select the most informative features for training a KNN classifier, which utilizes a 

distance-weighted voting scheme to predict the proper severity level of a newly reported 

bug. The effectiveness of the proposed approach has validated with two bug repositories, 

Eclipse and Mozilla. The result showed that their approach outperforms cutting-edge 

studies in predicting minority severity classes. 

Chauhan et al (Chauhan & Kumar, 2020) proposed a new automated classifier, 

that works using bigram and TF-IDF approach to extract report features, and then they 
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used SVM and neural network, using they found that the accuracy level of the classes is 

above 80, which make the approach effective and efficient. 

The following table shows a summary of the literature review with limitations, 

methodology, data set, and feature details for several studies related to determining 

severity of bug reports. 

Table 2.2. Summary of Related Methodology. 

Ref Methodology Dataset Limitation Of Study Feature 
Evaluation 

Matrix 

(Menzies & 

Marcus, 

2008) 

SEVERIS 

NASA 

Project, 

PITS 

The proposed methodology has a Lack 

of consistency in PITS. The written 

conclusion is rules and is self-certifying 

Textual 

Precision, 

Recall, and 

F-1 score  

(Sun, Song, 

& Jiao, 

2009) 

k-means, SRcut Mozilla 

The only textual features considered by 

the study. Some comments also reduce 

the model accuracy rate. Overall, the 

performance of the model was not so 

good. K means and normalization rates 

were no better than SRC. 

Textual 

Cluster 

purity,  and 

Accuracy 

(Nagwani 

& Verma, 

2011) 

STC 

Mozilla, 

Jboss-

Seam, 

MySQL 

The proposed method only considered 

the small amount of dataset. The only 

features used by methodology were 

textual.  

Textual 

Purity, a 

total count of 

Clusters, and 

total time. 

(Nagwani 

& Verma, 

2012) 

CLUBS 

Androi, 

JBoss, 

Mozilla, 

MySql 

The accuracy rate of the proposed 

methodology was quite low as 

compared to the amount of dataset 

Categori

cally and 

textual 

Precision, 

Recall, and 

F-1 score 

(Somasund

aram & 

Murphy, 

2012) 

SVM 

Bugzilla

Eclipse 

Pl 

The only textual features considered by 

the study. Some comments also reduce 

the model accuracy rate. Overall, the 

performance of the model was not so 

good.  

Textual Recall 

(Chawla & 

Singh, 

2014) 

TF-IDF, LSI 
Google 

Chrome 

The accuracy rate of the model was not 

so high.  
Textual Accuracy  
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3 Chapter Three 

Methodology 

3.1 Methodology Overview 

The methodology approach in this thesis is experimental. The idea of the proposed 

framework emerged due to the increase of the submitted bug reports. Usually, developers 

spend a lot of time reading and analysing the description of a bug report to enhance the 

detection process of bug severity (Blocker, Critical, Major, Minor, and Low). Often the 

appropriate level of severity cannot be determined and historical records must reviewed 

in order to identify a relevant bug report. 

3.2 Proposed Framework 

This section presents the process of assigning the severity level for bug reports, it consists 

of two phases as shown in the figure below and these phases are: 

 Phase one: Data collection and text pre-processing. 

 Phase two: Feature extraction, training dataset and applied LSTM, and RNN 

algorithms and finally evaluation process. 
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Figure 3.1: The Proposed Framework. 

3.3 Phase One: Data Extraction and Text Pre-Processing 

3.3.1 Dataset Extraction 

The bug reports dataset was extracted from the repository of JIRA (JIRA, 2020) related 

to closed-source projects developed by TETCO Tatweer Educational Technologies 

Company (TETCO, 2020) in Riyadh, Saudi Arabia. 

These data collected over a period of two and a half years, and it contains more than 2355 

bug reports organized in one CSV file. 

Each bug report described by set of factors such as summary, description, bug id, status, 

project name, project lead, priority, resolution, assignee, reporter, created date, resolved 

date, component, environment, sprint, attachment files and comments.  

This thesis used a specific set of factors from the chosen datasets. The factors are 

considered as the most appropriate factors in order to predict the severity level (Blocker, 

Critical, Major, Minor, and Low) are (Summary, Project key, Severity, Assignee, 

and Reporter). 

Proposed Framework

Phase One

Data Extraction

Text Pre-processing

Phase Two

Feature Extraction

Training Dataset 

Applied LSTM and RNN

Evaluation Process
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The dataset processed in three phases including dataset extraction, pre-processing, and 

dataset training and testing, as shown in the figure 3.2, and in the following subsections, 

these phases will explained in detail. 

 

Figure 3.2: Dataset. 

3.3.2 Dataset Pre-Processing 

Data pre-processing is an important phase in the data mining process, as incorrect results 

generated by the analysis of data that has not analysed; also, it makes it easy to work with 

the input data. To this end, prior to the execution of the experiments, the quality and 

accuracy of data should first be ensured data cleaning, data integration, data 

transformation and data reduction are component of pre-processing activities (Dagao & 

Yang, 2018). 

A new training package is the result of a data pre-processing task, which would create 

higher assignment efficiency and reduce classification time. This is due to the reduction 

D
at

as
et

Dataset Extraction

JIRA

TETCO

Dataset Pre-Processing

Sort The CSV File Rows Based 
On Severity Level

Tokenization 

Stemming

Stop Words Removal

Dataset Training And Testing

Training Data 80%

Testing Data 20%
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in the size of the data, which allows for the faster and easier operation of learning 

algorithms (Bilalli, Abelló, Aluja-Banet, & Wrembel, 2018). 

In this thesis, the Pre-processing of the TETCO dataset contains several activities as 

shown in the following figure below, and these activities include sorting the row, 

tokenization, stop-word removal, stemming, and remove the punctuation marks. 

 

Figure 3.3: Pre-Processing Activitys. 

These activities will discussed and explained in more detail in the following subsections. 

3.3.2.1 Sorting 

Sorting the CSV file rows based on the severity level. 

Bug Reports Repository
Sort The CSV File Rows Based 

On Severity Level

Tokenization Stop-word Removal 

Stemming
Remove The Punctuation 

Marks

Pre-processing Bug Reports
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3.3.2.2 Tokenization 

Tokenization is the process of dividing text into words or sentences, converting it into 

lowercase letters, replacing punctuation marks, and removing end spaces. 

3.3.2.3 Removal of Stop words 

Words that are used to associate sentence flow with stop words, such as "the", "a", "on", 

"is", "all", while processing data these words are removed because they can make the 

computation complicated (J. Kaur & Buttar, 2018). 

This process takes place in two steps, first the stop words extracted from the summary 

column of the dataset using the NLTK library (NLTK, 2017) and then the second step is 

to select the words and remove them from the dataset. 

 

3.3.2.4 Applying Steaming 

The steaming is a mechanism by which words are reduced to their root forms (Junior & 

do Carmo Nicoletti, 2019). 

For example, words “send”, “sending”, and “sent” are different words and the same root 

word “send”. The word can be reduced to its steams and changed converted into “send”. 

 

3.3.2.5 Punctuation Marks 

Punctuation marks are symbols that add clarity to sentences(Nádvorníková, 2020). 

English has 14 punctuation marks including period, question mark, exclamation point, 

comma, semicolon, colon, dash, a hyphen, parentheses, brackets, braces, apostrophe, 

quotation marks, and ellipsis (“?, !., . – { },: ; ). 

Punctuation marks are not necessary to train the model, so this step removes punctuation 

marks from the data set. In addition, it is use to remove duplicate characters. Finally, the 

words "www", "http?:" And "//" have been removed from the dataset. 
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3.3.2.6 Removing Repeating Character 

The repeating character removed from the dataset, as they can affect the computation 

complexity, time, and efficiency of the model.  

3.3.2.7 The Words in Dataset 

After pre-processing, the top 25 words an extracted from the dataset, as shown in the 

figure below: 

 

Figure 3.4: Top 25 Words Of The Dataset. 

 

The frequency distribution of the top 25 words is also generate as shown in the figure 

below. The x-axis indicates the count of words and the y-axis indicates the top 25 words. 

The frequency distribution indicates that the word “request” has the most number of 

counts.  
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Figure 3.5: Top Words In The Text.  

The table below shows the 10 most used words and indicates that the word that appeared 

the most frequently was "request" which appeared 955 times, while the word "wrong" 

was the least visible, as it appeared 255 times. 

Table 3.1.The most used 10 words 

Word Count 

Request 955 

Appear 850 

Student 469 

Field 339 

Scholarship 304 

Mesag 283 

Date 276 

Valu 271 

Companion 266 

Wrong 255 
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The word cloud of severe class is shows in the figure below.  

 

Figure 3.6: A Cloud Of Severe Class. 

 

The table below shows the 10 most used words of severe class, it is indicates that the 

word that appeared the most frequently was "request" which appeared 605 times, while 

the word "wrong" was the least visible, as it appeared 124 times. 

Table 3.2. Words Of Severe Class 

Words Counts 

Request 605 

Apear 535 

Student 292 

Field 186 

Scholarship 153 

Approve 145 

Value 145 

Companion 131 

Studi 128 

Mesag 127 

Wrong 124 



29 

 

The word cloud of the non-severity class is shows in the figure below.  

 

Figure 3.7: Word Cloud Of A Non-Severe Class. 

 

The table below shows the ten most used words of non-severe class, it is indicates that 

the word that appeared the most frequently was "request" which appeared 350 times, 

while the word "Update" was the least visible, as it appeared 129 times. 

 

Table 3.3. Ten Words Of A Non-Severe 

Words Counts 

Request 350 

Apear 315 

Data 310 

Student 177 

Mesag 156 

Field 153 

Scholarship 151 

Valid 151 

Companion 135 

Wrong 131 

Update 129 
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3.4 Phase Two: Feature Extraction, Training Dataset and Applied 

LSTM, and RNN Algorithms and Evaluation Process 

3.4.1 Feature Extraction 

The next step is to extract a feature from the pre-processed dataset. First, the input and 

output features are extracted. The reshaping is performed with the values of (-1, 1). 

 

Figure 3.8: Feature Extraction. 

After that, the feature selection performed on the extracted feature. The maximum words 

are selected 1500 and the maximum length is selected to 100. The tokenization of the 

feature also performed. 

 

Figure 3.9: Feature Selection. 

 

After the extraction of features, the dataset divided into training and testing sets. The 

testing data used for the training valuation of the model and the training dataset used to 

train the model.  

 

Figure 3.10: Dataset Splitting. 
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3.4.2 Dataset Training and Testing 

In this thesis, a Python library called Tensor flow (Tensorflow, 2015) was used to divide 

the data sets into training and testing sets in the ratio of 8:2,  as shown in the figure below. 

The testing sets used to evaluate the training for the model. Specifically, 471 bug reports 

are used to train the model, where 1884 bug reports were trained. In addition, it is worth 

noting that the length of the data set has a great influence on the models, so the large 

length helps the dataset to be more efficient in performance. 

 

Figure 3.11: Dataset Training and Testing. 

 

The study used three algorithms for testing and training i.e., LSTM and RNN. Each of 

these model training will be discussed in the following subsections in detail. 

3.4.2.1 RNN Model Training 

The RNN model trained on the training dataset. The RNN model used with the activation 

function of “sigmoid”, to get output from zero to one. In addition, the drop out is set to 

0.1, and the density is set to 1 and 64.  

The rectified linear function "RELU" has also been used with two activation layers, since 

RELU has shown great power when the input features are not independent of RELU if 

x>zero returns x, otherwise it returns zero. For many neural network types, it has 

converted into the default activation feature since a model used is easier to train and often 

performs better. 

Training Set 
(80%)                                     

1884 Bug 
Reports

Testing Sets 
(20%)     

471 Bug Reports

Dataset 
(100%) 

2355 Bug 
Reports
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The model is set to sequential. The model contains eight layers. The first layer is the 

dense layer that followed by the dropout layer. The dropout layer followed by an 

activation layer. After the activation layer, again dense layer used that follows the dropout 

layer. The dropout layer followed by the activation layer, dense layer, and third activation 

layer. The model trained on 6 epochs. The batch size is set to 32 and verbose is set to one. 

The model split validation also performed with 0.1. 

 

 

Figure 3.12: RNN implementation. 

 

The figure below shows the structure of the RNN model. This model contains eight 

layers; the first layer is a dense layer that followed by the dropout layer. The dropout 

layer followed by the activation layer. After the activation layer, again dense layer used 

that follows the dropout layer. The dropout layer followed by the activation layer, dense 

layer, and third activation layer.  
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Figure 3.13: RNN Model Structure. 

 

The model trained on 20 epochs. The batch size is set to 32, the model split validation 

also performed with 0.1.  

 

Figure 3.14: RNN Model Training 

 

The figure below shows the model training with 6 epochs. The loss and accuracy rate of 

the model quantified against each epoch. For epoch 1, the model score validation loss of 

0.82, the loss rate of 0.84, the accuracy rate of 0.60, and a validation accuracy of 0.60. 

The accuracy rate of the model increase and decrease with increasing epoch.  

 

Figure 3.15: The Accuracy Rate Of The RNN Model 
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3.4.2.2 LSTM Model Training 

The LSTM model trained on the training dataset. The LSTM model used with the 

activation function of “sigmoid” to get output from zero to one. In addition, the drop out 

is set to 0.5, and the density is set to 1 and 64.  

 The activation function “RELU” is also used since it has shown great power when the 

input features are not independent of RELU if x>zero returns x, otherwise it returns zero. 

For many neural network types, it has converted into the default activation feature since 

a model used is easier to train and often performs better. 

The embedding also performed that takes maximum words and input data length. The 

model contains eight layers. The first layer is the input layer that followed by the 

embedding layer. The LSTM, F1, activation and dropout layers used with LSTM. The 

model trained on 6 epochs. The batch size is set to 32. The model split validation also 

performed with 0.1. 

Firstly, the data was pre-processed. The model trained on extracted features. The ROC 

curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot are calculated 

for analysing model performance (Keras, 2019).  

 

The LSTM model trained on the training dataset. The LSTM model used with the 

activation function of “sigmoid”. The drop out is set to 0.5. The density is set to one. The 

activation function “RELU” is also used. The embedding also performed that take 

maximum words and input data length.  
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Figure 3.16: Implementation of LSTM 

 

The figure below represent the structure of the LSTM model. The model contains eight 

layers. The first layer is the input layer that followed by the embedding layer. The LSTM, 

F1, activation, and dropout layers used with LSTM.   

 

Figure 3.17: LSTM Model Structure 

 

The LSTM model trained on 20 epochs. The batch size is set to 80. The model split 

validation also performed with 0.1.  

 

Figure 3.18: LSTM Model Training and Validating. 
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The figure below shows the LSTM model training with 6 epochs. The loss decrease and 

the accuracy increases against each epoch. For epoch one, the model score validation loss 

of 0.80, the loss rate of 0.94, the accuracy rate of 0.48, and the validation accuracy of 

0.71. The accuracy rate of the LSTM model increase with increasing epoch.  

 

Figure 3.19: The LSTM Model Training With 6 Epochs. 

 

3.4.3 Evaluation Measures 

There are several criteria for measuring the accuracy of prediction algorithms. In this 

thesis, the accuracy of prediction algorithms was measured using the following criteria's 

Precision, Recall, F-Measure, and Accuracy to consider two important things 

performance and effectiveness (Domingues, Filippone, Michiardi, & Zouaoui, 2018). 

 

The Accuracy 

Accuracy is the percentage of correctly predicted to the total, which is considered an 

important measure when using asymmetric datasets that present when the false positive 

and false negatives the same value. Accuracy can measured by the Equation (1) (Imran, 

2016): 

Accuracy =(TP+ TN) /( TP+FP+FN+TN)                    (1) 

The Precision 
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Precision is the function of relevant instances among the retrieved instances. It can 

measured by the Equation (2) (Imran, 2016): 

Precision = TP / (FP+TP)                        (2) 

The Recall 

Recall is the percentage of correctly predicting positive for everyone in the actual result; 

it can measured by the Equation (3) (Imran, 2016):   

Recall = TP /( TP + FN)                           (3) 

The F1-Score 

F1-Score means the average of Precision and recall taking into account false positives 

and false negatives. F1-Score is more effective than accuracy, especially if the data 

distribution is unbalanced. F1-Score can measured by the Equation (4) (Imran, 2016):     

  F1-score= 2 * (Precision * Recall) / (Precision+ Recall)        (4) 

Where: 

 True Positives (TP): The result is the correctly predicted positive, meaning the actual 

results value and predicted result is "yes". 

 True Negatives (TN): The result is the correctly predicted negative, meaning the 

actual result value and the predicted result is "No". 

 False Positives (FP): This means the actual result is no and the predicted result is yes. 

 False Negatives (FN): This means that the actual result is yes and predicted result in 

no. 
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4 Chapter Four 

Experimental Results 

4.1 Overview 

This chapter presents the result of the experiment study, which has conducted to validate 

our module. The evaluation has performed with LSTM neural network and RNN.  

The ROC curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot 

calculated to estimate model performance. 

4.2 Results of LSTM 

The LSTM trained on a training dataset with 6 epochs. First, the data was pre-processed. 

The model trained on extracted features. Then, to estimate model performance, the ROC 

curve, F1, Precision-Recall, confusion matrix, accuracy plot, and loss plot should 

calculated. 

4.2.1 ROC Curve of LSTM 

The ROC curve of the LSTM model represented in the figure below. ROC curve is 

constructed by plotting the true positive rate (TPR) against the false positive rate (FPR 

The x-axis represents FPR and the y-axis represents TPR. The curve starts from zero and 

moves towards one and the closer the curve comes to the 45-degree diagonal of the ROC 

space, the less accurate the test (Skleran, 2019). The moving graph indicates the 

exceeding state of the graph. The false-positive rate is almost equal to one and the true 

positive rate is almost equal to one. In addition, the accuracy plot shows test and train 

accuracy. 



39 

 

 

Figure 4.1: ROC Curve. 

 

4.2.2 Confusion Matrix of LSTM 

The confusion matrix of the LSTM model shown in the table below. The y-axis represents 

the true label and the x-axis presents the predicted labels. The confusion matrix depicts 

that out of 203 0-class examples 156 predicted accurately and 47 examples predicted 

wrongly by model. For one class, out of 268 examples, 252 correctly predicted and 16 

examples predicted wrong. Overall, the accuracy of the model is very high. 

Table 4.1: The Confusion Matrix Of The LSTM Model 

N=467 
Predicted 

NO 

Predicted 

YES 
 

Actual: NO TN=156 FP=47 203 

Actual:YES FN=12 TP=252 264 

 168 299  
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4.2.3 Measure Values Applied on LSTM 

The table below shows the performance results of the LSTM model based on the level of 

severity. The LSTM model score accuracy rate of 0.87. 

Table 4.2:  Measure Values Applied on LSTM 

 Precision Recall F1-Score 

Class 0  0.91 0.77 0.83 

Class 1 0.84 0.94 0.89 

Macro Average 0.87 0.85 0.86 

Weighted Average 0.87 0.87 0.86 

 

4.2.4 Training and Validation Accuracy Plot of LSTM 

The LSTM Neural Network experiments after the training epoch have been tried with a 

model in Keras frameworks that run in Python (Keras, 2019). 

The validation data accuracy and loss could modified in various cases in the Keras model. 

The loss must be lower and higher as each epoch increases. The following cases will 

occur with Keras loss of validity and Keras accuracy (Brownlee, 2017): 

 Validation loss starts increasing, validation accuracy starts decreasing, and the model 

will be cramming values and not learning. 

 Validation loss and validation accuracy start increasing, the model will be over fitting 

probability values when softmax used in the output layer. 

 Validation loss starts decreasing, validation accuracy starts increasing. The model is 

learning properly. 
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The following figure shows the training and validation accuracy plot of the LSTM model, 

the x-axis shows the epoch value and the y-axis depicts the accuracy of the model against 

each epoch. The model accuracy with the training data set indicated by blue dots and the 

red line indicates model accuracy with validation data set. The results of this figure show 

that the performance of the model is high. 

 

Figure 4.2: Training and Validation Accuracy of LSTM. 

4.2.5 Training and Validation Loss Plot of LSTM 

The loss plot of the LSTM model also generated that tells the accuracy of validation and 

training. The x-axis shows the Epoch value and the y-axis depicts the loss of the model 

against each epoch.  The model loss with the training dataset indicated with blue dots and 

the model accuracy with the validation dataset denoted with a red line. The loss rate of 

the model is quite low on the training set as well as on the validation set. 
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Figure 4.3: Loss Plot of LSTM. 

4.2.6 Accuracy Plot of LSTM 

The accuracy graph shows the validation accuracy. The x-axis of the graph shows the 

value of the Epoch and the y-axis shows the model accuracy of every epoch. The accuracy 

rate of the model is 0.89. 

 

Figure 4.4: Accuracy Plot. 
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4.3 Results of RNN 

The RNN trained on a training dataset with 6 epochs. First, the data was pre-processed. 

The model trained on extracted features. Then, to estimate model performance, the ROC 

curve, F1-score, Precision-Recall, confusion matrix, accuracy plot, and loss plot should 

calculated. 

4.3.1 ROC Curve of RNN 

The ROC curve of the RNN model represented in the figure below. ROC curve is 

constructed by plotting the true positive rate (TPR) against the false positive rate (FPR 

The x-axis represents FPR and the y-axis represents TPR. The curve starts from zero and 

moves towards one and the closer the curve comes to the 45-degree diagonal of the ROC 

space, the less accurate the test (Skleran, 2019). The moving graph indicates the 

exceeding state of the graph. 

The false-positive rate is almost equal to one and the true positive rate is quite low. The 

true positive rate depicts the examples that are true and predicted as true. The true 

negative rate depicts the examples that are true but predicted false. 

  

Figure 4.5: Roc Curve for RNN.  
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4.3.2 Confusion Matrix of RNN 

The confusion matrix of the RNN model shown in the table below. The y-axis represents 

the true label and the x-axis presents the predicted labels. The confusion matrix depicts 

that out of 203 class examples 28 predicted accurately and 175 examples predicted 

wrongly by model. For one class, out of 268 examples, 244 correctly predicted and 24 

examples predicted wrong. In general, the accuracy of the RNN model is very low. 

Table 4.3. The Confusion Matrix Of The RNN Model 

N=471 
Predicted 

NO 

Predicted 

YES 
 

Actual: NO TN=28 FP=175 203 

Actual:YES FN=24 TP=244 268 

 52 419  

 

4.3.3 Measure Values Applied on RNN 

The table below shows the performance results of the RNN model based on the level of 

severity. The RNN model score accuracy rate of 0.58.   

Table 4.4. Measure Values Applied on RNN 

 Precision Recall F1-Score 

Class 0  0.54 0.14 0.22 

Class 1 0.58 0.91 0.71 

Macro Average 0.56 0.52 0.46 

Weighted Average 0.56 0.58 0.50 
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4.3.4 Training and Validation Accuracy Plot of RNN 

The RNN model accuracy plot is also generated which indicates the validation and 

training accuracy. The x-axis of the figure shows the importance of the Epoch and the y-

axis shows the model accuracy of every epoch. A dark green line used to represent model 

accuracy with the training data set and a light green line to indicate model accuracy with 

a validation data set. On both training and validation sets the performance of the model 

is low. 

 

Figure 4.6: Training and Validation Accuracy Plot of RNN. 

 

4.3.5 Training and Validation Loss Plot of RNN 

The loss plot of the model also generated that tells the accuracy of validation and training. 

The x-axis of the graph shows the Epoch value and the y-axis depicts the loss of the 

model against each epoch.  The model loss with the training dataset denoted with dark 

green and the model accuracy with the validation dataset denoted with a light green line. 

The loss rate of the model is high on training (in green colour) and validation (in yellow 

colour) sets. 
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Figure 4.7: Loss Plot of LSTM. 

 

4.3.6 Accuracy Plot of RNN 

The accuracy plot tells the accuracy of validation. The x-axis of the graph shows the 

Epoch value and the y-axis depicts the Accuracy of the model against each epoch. The 

heights accuracy rate achieved by the model is 0.60 

 

Figure 4.8: Accuracy Plot of RNN. 
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4.4 Comparison between LSTM and RNN 

In this section, a comparison made between the algorithms that used in this thesis in 

order to predict the severity of the bug reports. 

The following table shows the accuracy of the work of each of the algorithms, in addition 

to the accuracy achieved by each of these algorithms. The results show that the LSTM 

algorithm with score accuracy rate of 0.85 was the best among the algorithms used, 

followed by the RNN algorithm that achieved the lowest accuracy rate. 

Table 4.5 Comparison between LSTM and RNN Results. 

Algorithm Accuracy 

LSTM 0.85 

RNN 0.58 

 

A time computation-based comparison between LSTM, and RNN also performed as 

shown in the figure below. The x-axis shows the model name and the y-axis shows the 

calculation time for each model. It analyzed that the computation time of RNN is better 

than and LSTM. Hence, but as discussed, the LSTM performs much better. 

 

Figure 4.9:A Time Computation-Based Comparison between LSTM and RNN. 
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5 Chapter Five 

Conclusions And Recommendations 

5.1 Overview 

This chapter summarizes the main purpose of this thesis. Section 5.2 provides 

conclusions that deduced based on our proposed bug severity prediction framework, and 

section 5.3 reviews the further of the study. 

5.2 Conclusions 

This thesis provides a framework for automatically assign the severity of bug for bug 

reports to avoid wasting limited time and resources during the software testing process. 

The proposed framework involves using text pre-processing (tokenization, stop words 

and stemming) and then extracting an important keyword from the bug report description, 

this model trained on 80% of the dataset, and then tested on 20%. 

The proposed framework validated on datasets extracted from JIRA using a TETCO 

closed-source project dashboard with over 2,300 bug reports to get better performance 

and higher accuracy. 

The results of our experiments indicate that the proposed framework based on the LSTM 

algorithm achieved correctly predicts priority of bug reports and performance can 

significantly increase instead of RNN. 

In addition, the comparison of the models shows that the LSTM performed better than 

the RNN, and the LSTM scored an accuracy rate of 0.858 while the RNN scored an 

accuracy rate of 0.58. 
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5.3 Future Work 

In future work, Bi-directional LSTM and other deep networks-based models can applied 

to improve the performance of detection. Dataset can re-labelled with different annotators 

because the current data are not more distinguishable between the severities and non-

severe.  A built model can deploy to real-world applications.  
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